Epidermal Sensor Systems for Sensing and Therapy New Modality for Wearable Electronics

IEEE Central Texas Consultants Network Meeting May 25, 2016

> Pulin Wang, Ph.D., M.S.T.C. Cofounder and CEO Stretch Med, Inc.

Wearable Health Monitoring Devices

Wearable Device Market

Global Market for Wearable Health and Fitness Monitoring Devices

(Source: BCC research report, 2015)

Applications of Skin-Mounted Sensors

1. Mobile Health

2. Human-Machine Interface

Challenges for Heart Rate Monitors

Inaccurate

Pulse oximetry: used in all smartwatches

Uncomfortable

ECG: gold standard for heart rate measurement

- Need to wet the strap "Works great - if you "Lick it like a Dog...""
- **Restrict chest movement** "Slips when it gets to wet."
- Caus "Chaf
 - Cause skin irritation "Chafes, doesn't work reliably."

Quotes from customer feedbacks on Amazon.com Iyriboz, Y., et. al., British Journal of Sports Medicine, **25**, 162 (1991)

When Bio Meets Electronics

Soft Curvilinear Dynamic

Skin vs. Silicon

 $E_{\rm Skin} = 130 \times 10^3 \, {\rm Pa}$

DYNAMIC DISPLACEMENT MAPS

Credit: ICTGraphicsLab @ USC

$E_{\rm Si} = 130 \times 10^9 \, \rm Pa$

Credit: Intel

Flexible Electronics

Stretchable Electronics

Stretchable Transistors

Science 321, 1468 (2008).

Conformal LED

Nature Materials **9**, 929 (2010).

Tunable Electronic

PNAS 108, 1788 (2010).

Epidermal Electronics

Science 333, 838 (2011).

Balloon Catheter

Nature Materials **10**, 316 (2011).

Heart "Sock"

Nature Comm. 5, 3329 (2014).

Strategies for Stretchable Electronics

Out-of-Plane Buckling

Nat. Nanotech. 1, 201 (2006)

PNAS 105, 18675 (2008)

In-Plane Serpentines

Island + serpentine

Nat. Comm. 4, 1543 (2008)

Filamentary serpentine

Adv. Mat. 25, 2773 (2012)

Fractal serpentine

Stretchable Structure - Serpentine

Experiment Numerical Simulation

Microfabrication of Stretchable Electronics

Compliance of Filamentary Serpentines

Stretchability & Cycleability

Multi-Functionality

Kim*, Lu*, Ma* (*equal contribution), Rogers, et al., Science 333, 838, (2011).

Apps

Mounting and Removal of Epidermal Electronics

Epidermal Electronics on A Skin Replica

Yeo, Rogers, et al, Advanced Materials 25, 2773–2778 (2013).

Why Is Conformability Important?

Jeong, et. al., Adv. Mater. 2013, 25, 6839

Conformable contact ensures

- Low interface impedance → higher signal to noise ratio
- Less relative motion → less motion artifacts
- Better heat or mass transfer

Jeong, et. al., Adv. Healthcare Mater. **2014**, 3, 642–648

Recent Development in Epidermal Electronics

Kim*, Lu*, Ma* (*equal contribution), Rogers, et al., Science 333, 838, (2011).

19.8

20

19.4 19.6

Time (s) Xu *et al*, *Science* 344, 70 (2014).

-1.5

19

19.2

Jeong et al, Adv. Mater. 25, 6839 (2013).

Webb et al, Nat. Mater. 12, 938 (2013).

Son et al, Nat. Nanotech. 9, 397 (2014).

Dagdeviren et al, Nat. Mater. 14, 728 (2015).

Microfabrication of Stretchable Electronics

Cleanroom, time consuming, low yield, high cost, wafer-based

Cost and Time Effective "Cut-and-Paste" Method

Yang, et al, Adv. Mater. DOI: 10.1002/adma.201502386 (2015).

Subtractive, dry, desktop, portable, green & roll-to-roll compatible

Multiparametric Epidermal Sensor System

Disposable Epidermal Sensor System (ESS)

Yang, et al, Adv. Mater. DOI: 10.1002/adma.201502386 (2015).

Different Types of Substrates

Yang, et al, Adv. Mater. DOI: 10.1002/adma.201502386 (2015).

Multifunctional Epidermal Sensor System (ESS)

Yang, et al, Adv. Mater. DOI: 10.1002/adma.201502386 (2015).

Synchronous Multimodal Measurements

Chen et al, to be submitted (2016).

Exp. 1 - EMG Sensor on Muscles

Quantification of Muscle Fatigue

Exp. 2 - Soft Strain Gauges Measuring Skin Deformation

Exp. 3 - Skin Mounted Heater

Perioperative Warming

Expedited Transdermal Drug Delivery

Son et al, Nature Nanotechnology 9, 397-404 (2014).

Thermal joint therapy

Epidermal Programmable Heater

Exp. 4 - Electrotactile Stimulator

Ying, Bonifas, Lu et al., Nanotech 23, 344004 (2012).

Long-term ECG

Conventional Holter Monitor

ZioPatch

V-Patch

VitalPatch

Stretch Med Guardian Patch

The Ultimate Goal – One Patch Solution for Telemedicine

Global Telemedicine Hardware Market

"Global markets for telemedicine technologies", BCC Research 2035

Acknowledgement

Thank you

Stretch Med, Inc.,

A spin-off from the University of Texas at Austin

Application of Stretchable Electronics

Epidermal Electronics

Sokoban

Kim, D., et al., Science, **333**, 838 (2014) **Prof. Roger at UIUC**

Charge-Trap Floating-Gate Memory and Logic Devices

- Single-walled carbon nanotube (s-SWNT)-based devices
- Consists of units, capacitors, and logic circuits

Son, D., et al., ACS Nano, 9, 5585 (2015) Prof. Dae-Hyeong Kim at Seoul National U, Korea

Near-Field Communication (NFC)

i. The device on the skin

ii. The device under compression

iii. The device under compression with the cell phone showing text readout

Kim, J., et al., Small, **11**, 906 (2015) **Prof. Roger at UIUC**

Skin Prosthesis

Kim, J., et al., Nature Communication, 5, 5747, doi:10.1038/ncomms6747, (2014) Prof. Dae-Hyeong Kim at Seoul National U, Korea

Skin Prosthesis

Kim, J., et al., Nature Communication, 5, 5747, doi:10.1038/ncomms6747, (2014) Prof. Dae-Hyeong Kim at Seoul National U, Korea

Stretchable and Transparent Heater

- Stretching up to 60%
- Device thickness less than 500 µm

Hong, S., et al., Advanced Materials, **27**, 4744 (2015) **Prof. Seung Hwan Ko at Seoul National U, Korea**

Transcutaneous Monitoring

Jang, K., et al., Nature Communication, 5, 4779, doi:10.1038/ncomms5779, (2014) Prof. Roger at UIUC

ESS for Drug Delivery

Son, J., et al., Nature Nanotechnology, 9, 397 (2014) Prof. Dae-Hyeong Kim at Seoul National U, Korea

Triboelectric Nanogenerator

Kim, K. N., et al., ACS Nano, 9, 6394, doi: 10.1038/ncomms8647, (2015) Prof. Jeong Min Baik at UNIST, Korea

Stretchable Electroluminescent Device

Wang, J., et al., Advanced Materials, **27**, 2876 (2015) **Prof. Pooi See Lee at Nanyang Technological U, Singapore** Fabrication of Stretchable Electronics

Gold Nanobelts with Sinusoidal Structures (Change to Rogers)

Qi, D., et al., Advanced Materials, **27**, 3145 (2015) **Prof. Zhe Yu at Nanyang Technological U, Singapore**

Kirigami-Inspired Engineering

Shyum T. C., et al., Nature Materials, **14**, 785 (2015) **Prof. Shtein at U Michigan**

Mesh-Like Engineering

• Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes

Guo C. F., et al., Proceeding of National Academy of Science, **112**, 12332 (2015) **Prof. Ching-Wu Chua at U Houston**

Printable Electronics

Coflex substrate

Bandodkar, A., et al., Advanced Materials, **27**, 3060 (2015) **Prof. Wang at UCSD**

Printable Silver Nanowires

а

• Stretching up to 50%, 500 cycle at 20% without significant loss in electrical property

Liang, J., et al., Nature Communication, 6, 7647, doi: 10.1038/ncomms8647, (2015) Prof. Pei at UCLA

Wet Spinning Method

Step 1. Wet spinning method

Step 2. Ag precursor absorption and reduction

- Stretching up to 220%
- Only biaxial stretch

Lee, L., et al., Advanced Functional Materials, **25**, 3114 (2015) **Prof. Taeyoon Lee at Yonsei U, Korea**

NTS () based Conductive Yarn

Twisted/wrapped yarns (µm-mm)

- Stretchable Carbon Nanotube Texile
- Highly stretchable (up to 1320%)

Liu, Z. F., et al., Science **349**, 400 (2015) Ghosh, T., Science **349**, 382 (2015) **Prof. Baughman at UT Dallas**