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Source: National Geographic
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What we do!

Logistics
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Human-Allied Al

Can we build systems that can seamlessly interact with,
learn from, and collaborate with humans?
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Human-Allied Al: The Assistant

@asoning Module + Decision Making Module \

\CIinicaI Decision Support System /

Primary clinician
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clinical observations | | pull up additional
| information

=N
b il . AN

|IEEE CVT Dallas, October 15, 2019




Human-Allied Al: The Apprentice

Human to machine: Please complete this task!

Example: “Automate physician reports!” or
“Enter this data into the electronic health record!”
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Human-Allied Al: The Collaborator

for the machine
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Al, according to the world:

take your data spreadsheet...
Features

Objects
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Unfortunately, in reality...

|IEEE CVT Dallas, October 15, 2019



Challenges to HAAI

Different types and formats of data
Different scales of data
Different frequencies of data streams

Noise in measurements/sensors/data collection

Changes in acquired knowledge
Uncertain side-effects of actions
Partial observability of the world

Long-term effects of decision-making
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The Most Important Challenge?
Humans!?!i!
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* Thanks to Rao Khambampati

Understanding a human model is crucial
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(Our) 3 Steps to HAAI

Close the “loop”

Allow “richer”

human inputs Knows what it knows
More than a Asks what it does not know

“‘mere labeler”

Student-teacher interaction

Take advice and guidance
Teach the human!

Allows for robust learning
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Functional Gradient Boosting =

Learn multiple weak models rather than a single
complex model
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What can be learned?

Natarajan et al (2010, 2011, 2012,2013 ) Khot et al (2011, 2013), Yang et al (2016)
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What can be learned?

Natarajan et al (2010, 2011, 2012,2013 ) Khot et al (2011, 2013), Yang et al (2016), Hadiji et al (2015), Yang et al (2017)
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Try it yourself

e https://starling.utdallas.edu/software/boostsrl/

Tutorial

* https://starling.utdallas.edu/software/boostsrl/wiki/
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https://starling.utdallas.edu/software/boostsrl/
https://starling.utdallas.edu/software/boostsrl/wiki/

Fung et al. 2002, Towell and Shavlik 1994, Kunapuli et al. 2013

Types of Advice

Monotonicity As feature x 1,
P(positive) T

Yang & Natarajan ECML ‘13, Yang et al. ICDM ‘14
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Types of Advice

Preference Knowledge = 4

Powerful framework that can incorporate
different kinds of advice

Odom et al. AAAI ‘15
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Types of Advice

Privileged Information

Odom & Natarajan, Frontiers 18
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Wearable Sensors

Wearable
Activity Tracking
Quantified Self
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Knowledge-Based Learning

IEEE CVT Dallas, October 15, 2019 Fung et al. 2002



Knowledge-Based Learn;
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passive learning

during learning

learner

/

Nkb = O(IOg Np)

N, ~ O(log Np)

classical learning setup without any human-in-the-loop guidance

active learning

can query the human-in-the-loop to elicit information

about individual examples, their labels, features

advice-based learning
human-in-the-loop gives general advice including label
& feature preferences, constraints, domain knowledge, rules

1

active guidance elicitation for learning
human-in-the-loop gives advice about the task including preferences,
constraints, domain knowledge and rules

N,g = O(loglog Np)

Guidance
IEEE CVT Dallas, October 15, 2019



Active Learning

Learn initial model from training data - m;

Generate prediction over data - Py, (¥;[x;)

Calculate uncertainty — H (P, (y;1x;))

Selectexample(s) -argmax H (P, (v;|x;))

Xi
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Odom & Natarajan (2016)

Active Advice Seeking

Relational Model

Learn initial model from training data - m;

Generate prediction over data - Py, (¥;[x;)

Calculate uncertainty — H (P, (y;1x;))

Selectexamplefsj=argmax H%i (yilx))
Xi

Select clause/rule with the highest uncertainty
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Frameworks for Advice Seeking

Probabilistic Graphical Models
Relational Probabilistic Models
Reinforcement Learning

nverse Reinforcement Learning

mitation Learning

Probabilistic Planning
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Logistics Domains

Handwriting
Recognition
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Several Real Applications

Unstructured Structured
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n Cause of
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death in America today. \ ] ‘
o / e
( T Mo study would be complete withowt 2 LL
\, — Lorgest rodent in the

Image Segmentation Recommendation
and Classification Systems
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UTSouthwestern
Medical Center.

HEART DISEASE

is the number 1 cause of death in the U.S.,

killing 787,000 in 2013

Every 60 In the U.S.
seconds 'ﬁ someone has
someone a heart attack

dies of a every 34
seconds

cardiovascular
disease

Cardiovascular Events
Prediction and Treatment
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MEDICAL CENTER

The promise of discovery

Medical record
théd: :

Predicting rare diseases, post-partum
depression from survey data

X Wake Forest®
Baptist Health

Predicting diabetes / cognition
from sensors

PPMI Study
HEE Serious Pr. Mcha ‘) PPMI M’
@R Death —]\
—
(e 7S
&S
''''
A P @ S N D s D
& ST L A,
,,9"@@,9@,9@@@9

Year

Predicting the side-effects of drugs
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Parkinson’s disease prediction
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Miles to go before we sleep!

» Ensuring Human Trust — explain decisions and solicit
feedback Always include humans in decision-making

 Enabling Machine Fairness — avoid bias in learning
(social/economic/religious) impossible to maximize all
notions of fairness

 Handling Ethical Issues — white lies to make us eat
healthy vs negotiation for profit

- Data vs Knowledge — what if the evidence is contrary to
human perception?

» Optimal/Rational vs. Human-like
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Al Serenity Prayer

Yerman, grant me the Seremdy Zo
accept Che Z‘/zbgé‘ I cannct learn;

Data o learn Zhe f/z:'rgé‘ I can,

And eoisdonrr 2o know the difference.

Tweet your questions/comments — @Sriraam_UTD

Thanks to Prof. Rao Khambampati, Arizona State University
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