

ENERGY STORAGE and ELECTRIC VEHICLES (EV)

Bill Muston

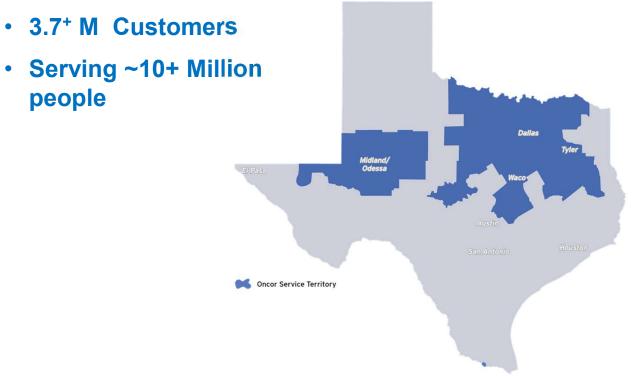
Oncor Electric Delivery Company LLC March 16, 2021 Joint Session: IEEE Dallas Communication and Vehicle Technology Chapter (CVT) and Dallas Electric Club (DEC).

©2020 Oncor Electric Delivery Company LLC. All rights reserved.

Disclaimer

Scope & Disclaimer

This presentation is intended to be broad in scope. It will include a range of energy storage system (ESS) applications in the power grid.

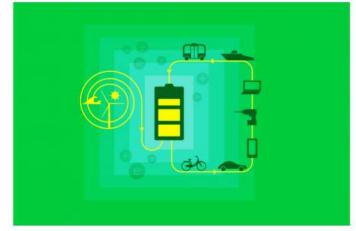

The applications and examples cited in this presentation are general in nature and are not specific to market structures, nor are they specific to Oncor or even related to the business of Oncor under market structure and rules set by the PUCT.

ONCOR

- Distribution ٠
- Transmission
 - Move energy to distributors
 - Open access
- **Distribution**
- Interconnections ٠
- Metering •
 - Wholesale
 - Retail

Regulated, investor-owned, utilities in ERCOT - do not generate or sell electricity -- but deliver it -

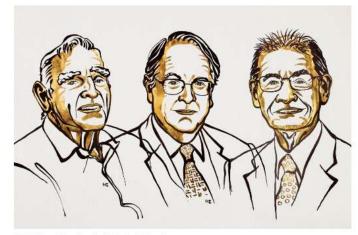
people



The Nobel Prize in Chemistry 2019

They created a rechargeable world

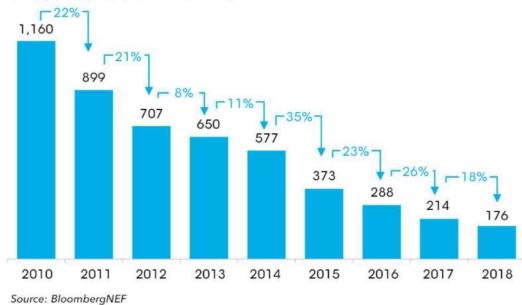
The Nobel Prize in Chemistry 2019 rewards the development of the lithiumion battery. This lightweight, rechargeable and powerful battery is now used in everything from mobile phones to laptops and electric vehicles. It can also store significant amounts of energy from solar and wind power, making possible a fossil fuel-free society.


Read the press release Read more in the scientific background Find out more in the popular information

© Johan Jarnestad/The Royal Swedish Academy of Sciences

The 2019 Chemistry Laureates

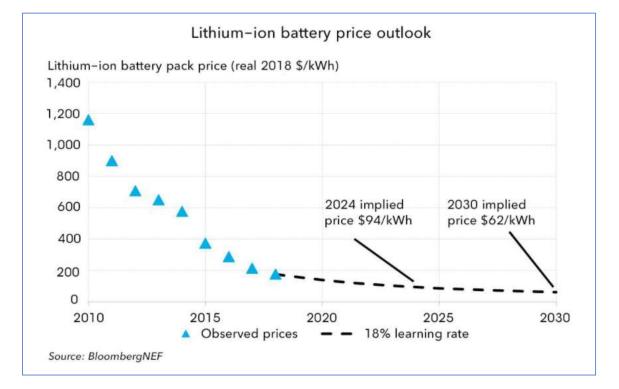
The 2019 Nobel Prize in Chemistry are awarded to John Goodenough, M. Stanley Whittingham and Akira Yoshino "for the development of lithium-ion batteries". Through their work, they have created the right conditions for a wireless and fossil fuel-free society, and so brought the greatest benefit to humankind.



https://www.nobelprize.org/prizes/chemistry/

III. Niklas Elmehed. © Nobel Media.

Bloomberg Battery Price Survey


Lithium-ion battery price survey results: volume-weighted average

Battery pack price (real 2018 \$/kWh)

Source: Bloomberg https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/

Bloomberg Battery Price Outlook

Source: Bloomberg https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/

Li-Ion Market Is Dominated by EV Market

... Values as MWh, comprehend COVID-19 impact

From 160 GWh in 2018 to >1,2 TWh

+20 % per year in Volume Li-ion Battery sales, MWh, Worldwide, 2000-2030 2019: >190 GWh 1,200,000 Auto, E-bus Auto, E-bus China 1,000,000 Excl. China CAGR 15/30 40% 26% (Optimistic) 800,000 Others 14% Industrial, ESS Electronic ≨ €00,000 5% devices hers 18% 11% Industrial, ESS 21% 400,000 2030: >1100 GWh 📕 Auto, E-bus China 20% 200,000 Auto, E-bus Excl. Auto, E-bus China Auto, e-bus Excl. 30% China 38% China 47% Electronic devices 4% 2005 2010 2015 2019 2025 2000 Electro rs Industrial, ESS device 3% 7%

CAGR 2015/2030

5%

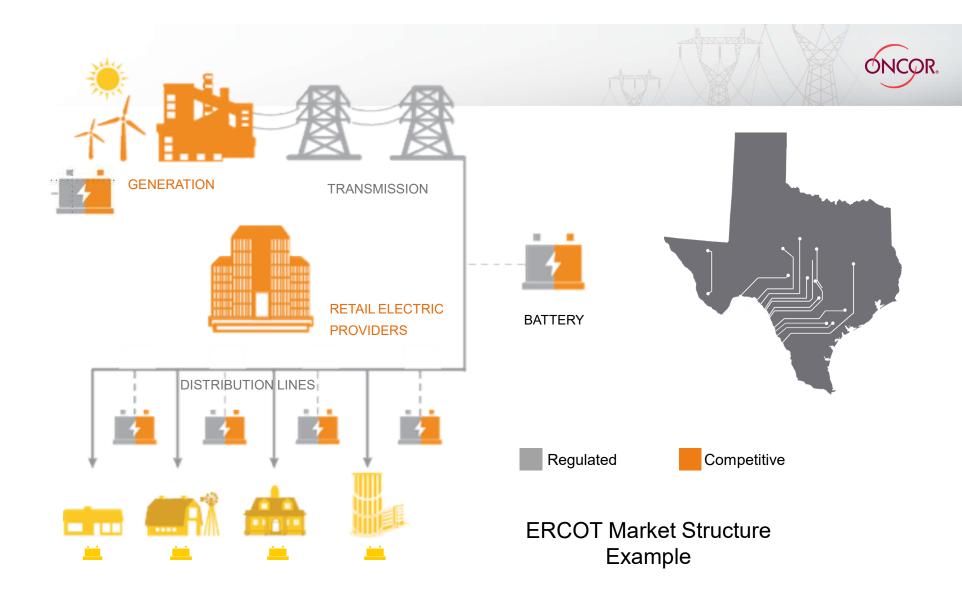
Others: medical devices, power tools, gardening tools, e-bikes...

Source: AVICENNE Energy 2020 - COVID 19 impact partially implemented as the crisis is not over - Impact could be worst

WHAT IS ENERGY STORAGE?

A means to transform Grid electricity into another form of energy and return that energy when needed

Many forms of energy storage exist


- Pumped Hydro hydro potential energy
- Battery Electrochemical -
- Battery Flow battery
- Flywheel Inertial Energy in Spinning Mass
- Compressed Air Mechanical Compression
- Liquid Air Mechanical Compression and Thermal Cooling
- Capacitors Electrical Charge

Lithium-ion batteries are the new market leader

- Declining costs
- Modular deployment in small, rapid capital increments
- Highly flexible and controllable

Lithium-Ion energy storage is transformative to the grid

ROLES FOR ENERGY STORAGE

BULK GRID	TRANSMISSION	SUBSTATION & DISTRIBUTION	CUSTOMER	
Wind & solar smoothing & dispatch	Reliability Role Meet a short-run N-1	Support a feeder segment during short	Manage peak demand to limit demand charges	
Time-shift available energy supply to meet	operational need	upstream outages	Smooth & firm solar	
later grid needs Hedge for upside price	Economy Role	Defer or substitute for traditional upgrades needed to support	Time-shift energy from the grid or from customer-sited solar,	
opportunity	Market role in ERCOT?	growing loads	such as to manage energy use under a	
Reliability services Supply regulation 		Integrate distributed energy resources	time-of-use retail rate	
Frequency regulation Responsive reserves for grid contingency		(DERs) to the local grid to maintain grid stability & voltage	Support site operations during a grid outage	
for grid contingency Fast response 		Extended-time local	Provide service to utility needs when	
Peaking capacity in ISO's w capacity		area operations with storage as part of a microgrid during	market structure supports that role & the utility need exists	
markets (not ERCOT)		outages	,	

ÓNCOR.

DESIGN FLEXIBILITY & CHOICES – BATTERY STORAGE

Power: Charge-discharge

Energy: How much

Rapid charge-discharge → High C-rate

Power conversion system (two-way ac/dc/ac converter)

Container & systems

Grid transformer & SCADA

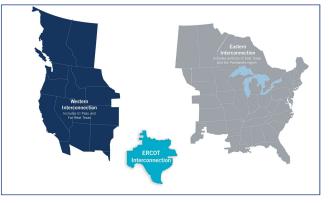
Site meteorological

Site layout

Efficiency – kWh_{AC} out / kWh_{AC} in


Life - cycles & shelf life

www.kaplanco.com


WHO IS ERCOT

Vour Power. Our Promise.

http://www.ercot.com/content/wcm/lists/219736/ERCOT_Fact_Sheet_2.1.21.pdf

The Electric Reliability Council of Texas (ERCOT) is a nonprofit organization that ensures reliable electric service for 90 percent of the state of Texas. The grid operator is regulated by the Public Utility Commission of Texas and the Texas Legislature.

ERCOT has four primary responsibilities:

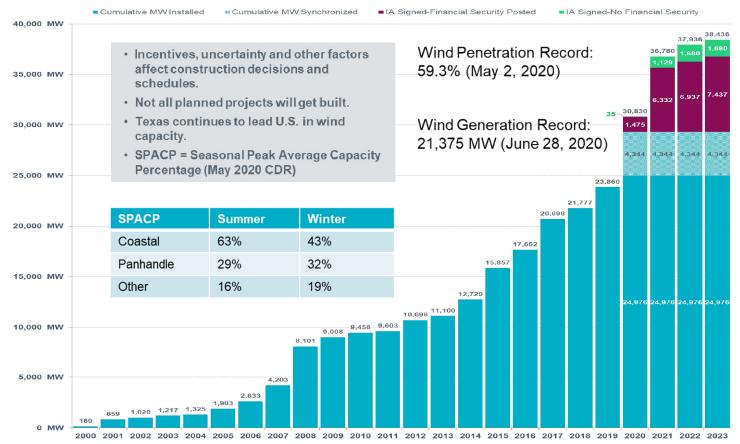
- Maintain system reliability.
- · Facilitate a competitive wholesale market.
- Facilitate a competitive retail market.
- Ensure open access to transmission.

ERCOT STATISTICS

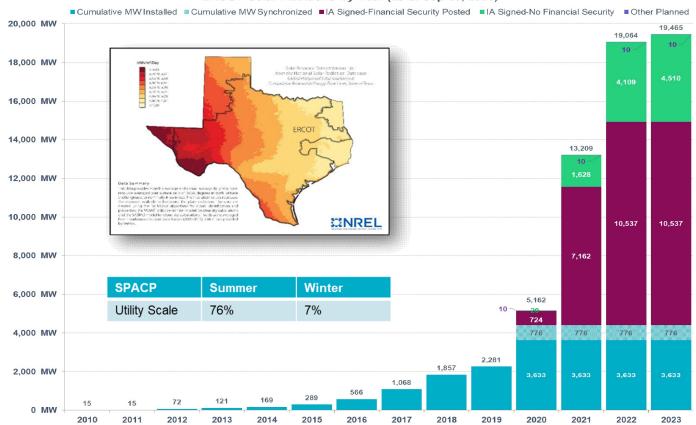
74,820 MW Record peak demand (Aug. 12, 2019)	73,821 Weekend peak dem (Aug. 15, 20	and record	about	200 Texa	icity can power as homes during a demand.
	flects operational installed capacity sed on the December 2020 CDR report	2020 Energy	v Use		
51.0% Natural Gas	8% 13.4% Ind Coal	45.5% Natural Gas *Other includes solar, I	vdro, petroleum cok	22.8% Wind	17.9% Coal
Other includes hydro, biomass-fired units and DC tie capacity	4.9% Nuclear 3.8% Solar 1.9% Other 0.2% Storage	landfill gas, distillate Transfer imports/expoi storage load	fuel oil, net DC-tie a ts and an adjustmen	and Block Load at for wholesale	10.9% Nuclear 2.9% Other*

2020, a nearly 5 percent decrease compared to 2019.

ERCOT Energy Storage Overview


Kenneth Ragsdale Principal, Market Design ERCOT

October 14, 2020


ERCOT Wind Additions by Year (as of September 30, 2020)

ERCOT Wind Additions by Year (as of Sep 30, 2020)

ercot 🦃

Utility Scale Solar Additions by Year (as of September 30, 2020)

ERCOT Solar Additions by Year (as of Sep 30, 2020)

Other Planned capacity reflects registered projects under 10 MW in size that are not included in the Resource Integration and Ongoing Operations Interconnection Services (RIOO-IS) System.

ercot 😓

Battery Additions by Year (as of September 30, 2020)

										1,498
	INR		Project Name		County	Projected COI	Capacity (MW)			
400 MW	20INR	0220	Eunice Storage		Andrews	1/4/202	1 40		1,398 163	163
	21INR	0357	SP TX-12B BESS		Upton	1/29/202	1 23			
	20INR	0276	North Fork Energy S	torage	Williamson	5/15/202	1 100		163	
0.0004	20INR	0291	Silicon Hill Storage		Travis	6/1/202	1 105			409
0 MW	20INR	0294	Lily Storage		Kaufman	6/1/202	1 52			
	21INR	0244	Madero Grid		Hidalgo	6/1/202	1 102			
	21INR	0364	Gambit Batt		Brazoria	6/1/202	1 102		309	
0 MW	21INR	0365	Bat Cave Energy Sto	rage	Mason	6/1/202	1 100		-	
	21INR	0476	Azure Sky BESS		Haskell	6/1/202	1 78			
	19INR	0176	Roughneck Storage		Brazoria	7/1/202	1 50			
2	20INR	0089	Chisholm Grid		Tarrant	7/9/202	1 102			
0 MW	21INR	0510	Crossett Power		Crane	7/15/202	1 209			
	20INR	0281	Queen BESS		Upton	5/6/202	2 50			
	20INR	0280	High Lonesome BES	5	Crockett	6/1/202	2 50			
0 MW						nooline. menine	1162			
									753	753
0 MW										
0 11100								327		
								154		
0 MW								134		
						73	94 104		173	173

ERCOT Battery Additions by Year (as of Sep 30, 2020)

Other Planned capacity reflects registered projects under 10 MW in size that are not included in the Resource Integration and Ongoing Operations Interconnection Services (RIOO-IS) System.

ercot 😓

Summary of Generation Interconnection Requests (as of 10-1-20)

Fuel Type/ Technology Type	SS and FIS Completed IA (MW)	Grand Total (MW) In Progress	
Natural Gas	1,668	6,494	
Coal	0	420	
Wind	8,027	23,679	
Solar	11,128	77,074	
Compressed Air Storage	0	324	~ 30 % Co-located
Battery	419	18,109	
Other	0	350	
Total	21,242	126,450	

Does not include project requests on the distribution system

SS = Security Screening Study

- FIS = Full Interconnection Study
- IA = Interconnection Agreement

Report run Dec 1, 2019:7,214 MWReport run Dec 1, 2018:2,048 MWReport run Dec 1, 2017:0 MW

Questions?

Kenneth Ragsdale ERCOT

ercot 😓

ERCOT Market Example . . . *From Aug 25, 2020 Energy Storage News*

'Largest standalone battery project' in Texas' ERCOT market begins construction

Within a very short space of time Texas' ERCOT market has gone from welcoming projects such as the 10MW Prospect project from developer GlidePath to much bigger projects such as Able Grid's Chisholm and those under development by Broad Reach Power. Image: GlidePath.

Source: Energy Storage News, Aug 25, 2020 https://www.energy-storage.news/ news/largest-standalone-battery-project-in-texas-ercot-market-set-to-begin-const Construction on a 100MW battery energy storage project in Texas has begun through partners Able Grid Energy Solutions, MAP Energy, Astral Electricity and Mortenson.

Developer Able Grid announced that full notice to proceed has been issued on the Chisholm Grid battery energy storage system, which will have an initial rated capacity of 100MW and is scheduled to begin operations in mid-2021.

... the plant, located in the city of Fort Worth, will play into the Electricity Reliability Council of Texas (ERCOT) market.

... another developer, Broad Reach Power, is delivering more than a dozen projects of 10MW / 10MWh this year

ERCOT 20INR089 Chisholm Grid Tarrant County 7/9/2021 COD 102 MW

21

ERCOT Market Example . . . From Mar 10, 2021 Dallas Morning News

Business

Another market example from the ERCOT interconnection queue, recently identified as Tesla

ERCOT 20INR0364 Gambit Batt Brazoria County 6/1/2021 COD 102 MW

Dallas Morning News Wednesday, March 10, 2021

22

GRID ENERGY STORAGE USES

Wind & solar smoothing & dispatch

Time-shift available energy supply to meet later grid needs

Hedge for upside price opportunity

Reliability services

- Supply regulation
- Frequency regulation
- Responsive reserves for grid contingency
- Fast response

Peaking capacity in ISO's w capacity markets (not ERCOT)

TRANSMISSION

Reliability Role

Meet a short-run N-1 operational need

Economy Role

Market role in ERCOT?

SUBSTATION & DISTRIBUTION

Support a feeder segment during short upstream outages

Defer or substitute for traditional upgrades needed to support growing loads

Integrate distributed energy resources (DERs) to the local grid to maintain grid stability & voltage

Extended-time local area operations with storage as part of a microgrid during outages

CUSTOMER

Manage peak demand to limit demand charges

Smooth & firm solar

Time-shift energy from the grid or from customer-sited solar, such as to manage energy use under a time-of-use retail rate

Support site operations during a grid outage

Provide service to utility needs when market structure supports that role & the utility need exists

DELIVERY OF POWER – SUBSTATIONS & DISTRIBUTION

ONCOR.

DISTRIBUTION FEEDER – BASIS FOR DISCUSSION

CIRCUIT BREAKER AT SUBSTATION

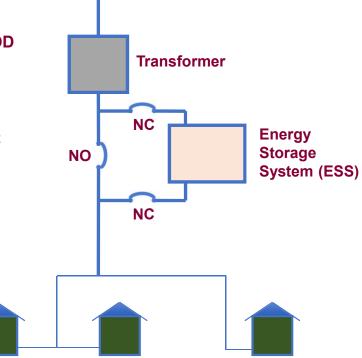
Circuit Breaker for Each Feeder

> Protective Relays

DISTRIBUTION FEEDER

Radial, not networked

Simplified diagram does not show reclosers, capacitor banks, voltage regulators and laterals

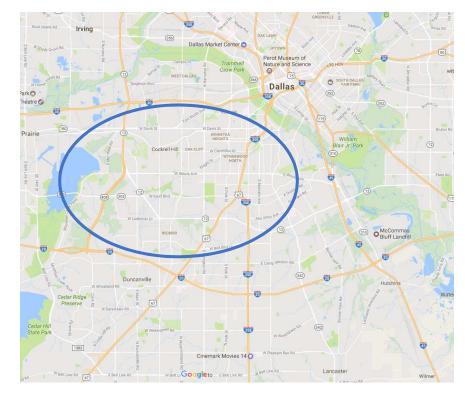

12.5 kV or 25 kV primary voltage at Oncor

ESS PLACED AT LOAD-SERVING TRANSFORMER

ONCOR NEIGHBORHOOD STORAGE RELIABILITY INITIATIVE (NSRI)

25 kW x 25 kWh Discharge only to support homes in a grid outage Recharge only off system peak

NEIGHBORHOOD STORAGE RELIABILITY INITIATIVE


Evaluate effectiveness of deploying small-scale battery storage to bridge outages and improve local power quality

Six 25 kW x 25 kWh lithium ion batteries

These batteries are capable of bridging outages up to a few hours of duration

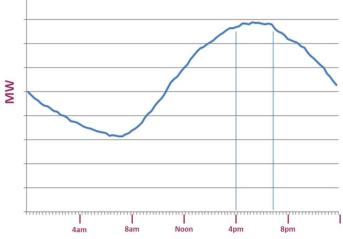
Install on secondary of transformer, test and monitor

120/240 Single Phase

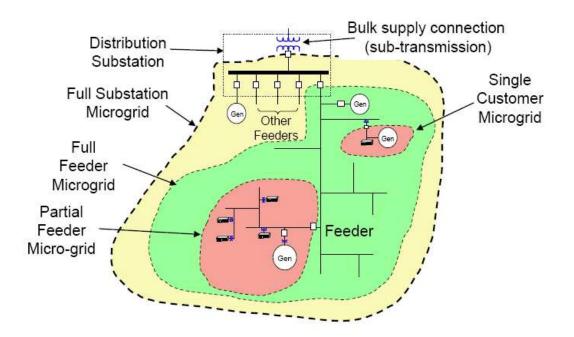
Deployed & operational by the end of 2014 SAIDI improvement confirmed & documented Removed from service in 2019

SAIDI = System Average Interruption Duration Index

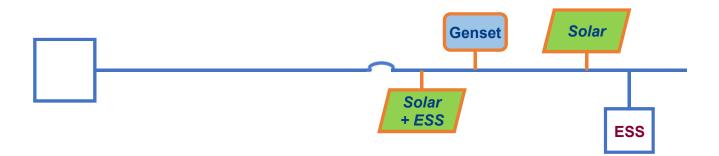
SERVE GROWING LOAD – LOCAL PEAK LOAD


ONCOR.

RELIEVE OVER-DUTIED SUBSTATION EQUIPMENT


For a fully loaded substation transformer, could an ESS serve incremental peak load growth to avoid overloading the transformer?

Defer a substation expansion with new transformer for a year or two or three?


What is a Microgrid?

"A group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid and that connects and disconnects from such grid to enable it to operate in both grid-connected or 'island' mode"

LOCAL MICROGRID – FUTURE CONSTRUCT

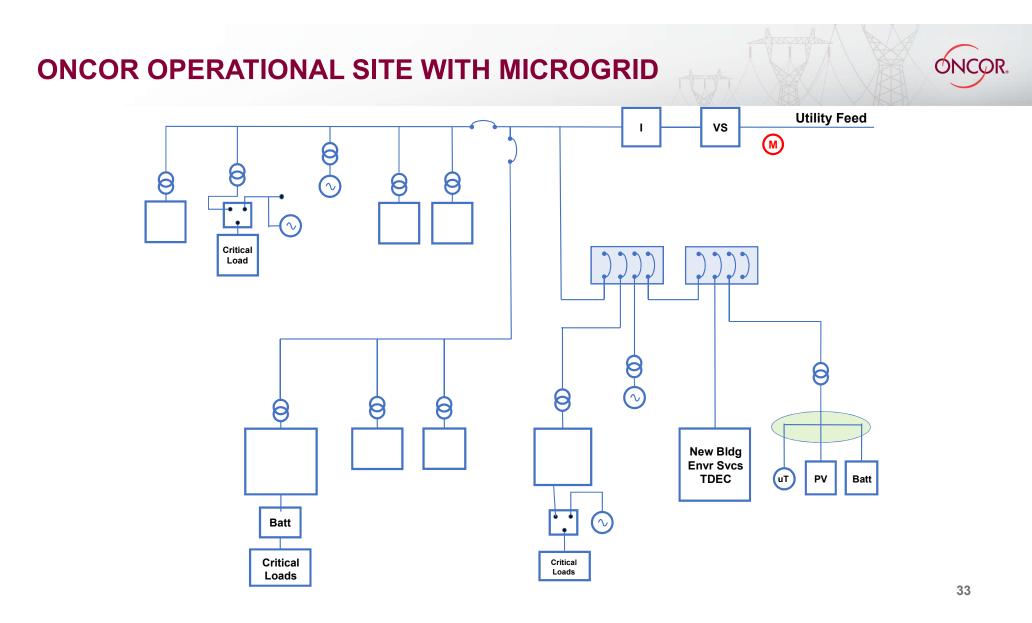
ESS on Feeder with DER

- Feeder segment with storage
- Grid-connected and islanded operations
- Grid-connected: Limit abrupt changes of power level on feeder/support voltage stability
- Islanded: ESS as grid-forming element / Controller dispatches supply and ESS to balance with load during island

Reliability → Resilience

- Utilize ESS to support feeder segment in an outage
- Distributed energy resources (DER) extend the electrical island operation
- Local controller to maintain frequency
 & voltage, resynchronize to the grid
- Controller dispatches supply and ESS to balance with load
- Reliability → Resilience if designed for robust events

STORAGE TO ANCHOR A MICROGRID


Demonstrate capability of storage to anchor a distributed microgrid DURING LOSS OF UPSTREAM GRID POWER

Type: Behind-the-meter campus-styled microgrid

Type: Utility feeder segment anchored by storage

- Customer loads
- Solar by customers & 3rd-parties
- Dispatchable natural gas generation by 3rd-parties & customers
- Energy storage with inverter with grid-forming capabilities

A key evolutionary integration capability for electric utilities as distributed resources increase?

MICROGRID

Key Microgrid **Attributes**

- Grouping of ٠ interconnected loads and distributed energy resources
- Can operate in island • mode or gridconnected if desired
- Controls and grid-• forming inverter to accommodate both modes of operation

Immersion Room

Microturbine

Energy Storage

EV Charger &

Solar Canopy

Legacy Equipment

Control Center

SUMMARY

Energy storage technology and vendors and business models are evolving rapidly worldwide Declines in energy storage cost and improvements in performance will continue

Utilities and regulators in western and northeastern states, and in Hawaii & Ontario, are driving early deployments and regulatory models

Texas Legislature and PUCT have acted quickly and continuously to integrate energy storage to wholesale markets

Yet the Leg & PUCT have been slow to consider and define appropriate roles for TDSPs to own or use energy storage for traditional T&D purposes

The growth of EVs will further drive opportunities in grids for energy storage, with vehicles being capable of injecting their energy into homes or the grid, and serving in the same roles as energy storage.

Transportation Electrification

Views for Oncor Strategy and Emerging Issues

March 2021

KEY TERMS

- Charging options: Level 2 (240Vac); DC Fast Charger (higher kW chargers generally 25kW to 1MW+)
- EVs –Any vehicle that utilizes an electric motor as source for propulsion
- PEVs–Any vehicle that connects to the primary grid or generation source to recharge energy storage system
- BEVs –Battery Electric Vehicle– Vehicle that only uses an electric motor for propulsion with energy storage as a power source. Recharging can be done by plugging into the primary grid and/or generation source
- PHEVs Plug Hybrid Electric Vehicles Vehicle that uses both an electric motor with energy storage and an internal combustion engine for propulsion. Recharging can be done by plugging into the primary grid and/or generation source
- Hybrid Electric Vehicles generally use an internal combustion engine to charge a battery to power an electric motor drive system (most Prius vehicles they cannot take a grid charge)
- EVSE Electric Vehicle Supply Equipment, official name for EV chargers
- Fleet Vehicles Delivery vans and freight box trucks and tractors (classes 4-8)
- Green Fleet Tools: Oncor proprietary tools to estimate distribution system impacts of fleet electrification
- Light Duty Vehicles passenger cars, SUVs, pickups and vans
- NCTCOG North Central Texas Council of Governments (DFW Clean Cities, EV North Texas)
- Public Charging Infrastructure electric vehicle chargers that are publicly available for any EV owner
- Underserved Areas locations where few if any public chargers are available and current economics limit investment attractiveness.

EV's Affordable & Available

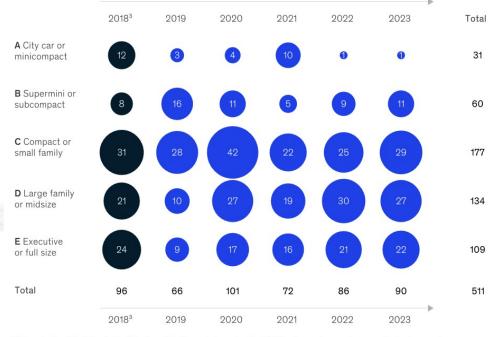
Hyundai Kona \$35,000 Range: 258 miles

Chevy Bolt \$37,000 Range: 259 miles

Tesla 3 \$41,190 Range 250-322 miles

Globally 400 New OEM Models by 2023

FIRST LOOK

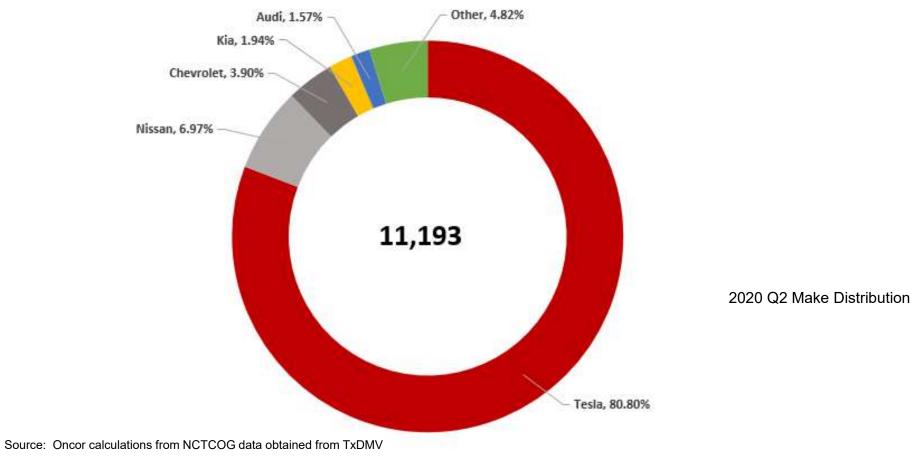


15

Note: For the US market IHS Markit forecasts 43 OEMs will release an ever changing number of the 400 models in the US..

©2020 Oncor Electric Delivery Company LLC. All rights reserved.

Existing and newly launched BEV¹ and PHEV² models by vehicle segment, number of model launches

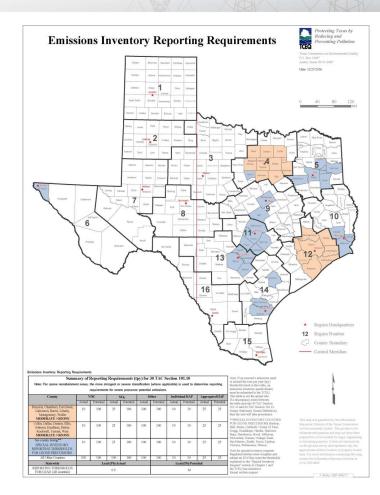


¹Battery electric vehicle. ² Plug-in hybrid electric vehicle. ³Cars actually produced in 2018. All subsequent year numbers are estimates by segment. Source: IHS Markit; McKinsey analysis

McKinsey & Company

ONCOR.

BEVs in Oncor Service Area



Environmental Impact of EV Adoption in Texas

- •Texas has two Clean Air Act nonattainment areas including the DFW area.
- •For North Texas, the primary nonattainment is an 8 hour ozone per the 2015 standard (.70 ppm).
- •NOx is the primary pollutant that must be reduced to achieve a reduction in ozone.
- •If the required NOx reduction were to come solely from EVs replacing ICE vehicles, it would require approximately 1.25 million of the 8.83 million registered vehicles (14%) in the Oncor service area to convert to an EV. (Oncor Estimate)

Oncor estimate

Evolving Charging Approaches

- Level 1 (wall outlet 120 vac
- Level 2 (dryer or oven outlet 240 vac)

Workplace Charging

• Generally level 2

Public Charging

- Generally level 2 with increasing deployment of DC Fast Chargers (480 vac) for intercity and shopping centers
- Underserved areas
 - Apartment complexes, local shopping centers, communities with a lower than average household income
- Commercial areas
 - Drug stores, department stores, hotels/motels, community centers
- Intercity routes
 - Rest stops and access areas

Off-grid Charging

• Chargers served by solar pv, batteries and or generators

Integrated Charging (with Solar PV)

• Residential and some commercial and intercity to reduce demand charges

Chargers by Vehicle Class

Source: EnelX April 20, 2019

- Currently the charging approaches are limited to AC for slow/overnight charging primarily of light duty vehicles and delivery vans.
- The DCFC connectors shown at left represent the public fast charging infrastructure and operate at 25 – 350 kW for those classes
- The same connectors are planned for higher class fleets but are still in development and range from 50kW to potentially 1.5MW+

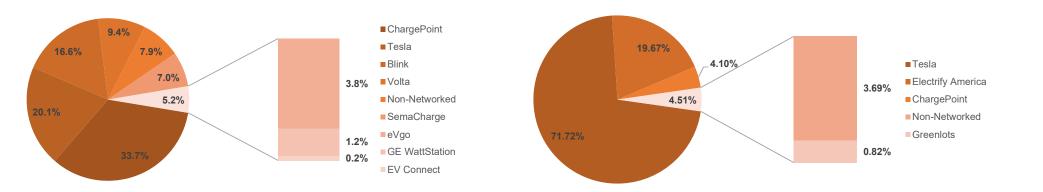
Evolving Charging Markets – World View

- Electrify America (VW) (2,000 DCFC)
- Chargepoint (60,000)
- ChargeMaster (British Petroleum) UK only (7,000)
- Greenlots/New Motion (EU) (Shell) (30,000)
- EVgo (1,050 DCFC only)
- Daimler: RWE Effizienz/EnBW/New Motion (1200)
- Siemens (EU only several hundred)
- EVBox (60,000 +700 DCFC)
- G2Mobility (10,000)

Source: Open Charge Map ©2020 Oncor Electric Delivery Company LLC. All rights reserved. There are almost 150,000 charging stations across about 75,000 locations around the world excluding China. The countries with the highest number are:

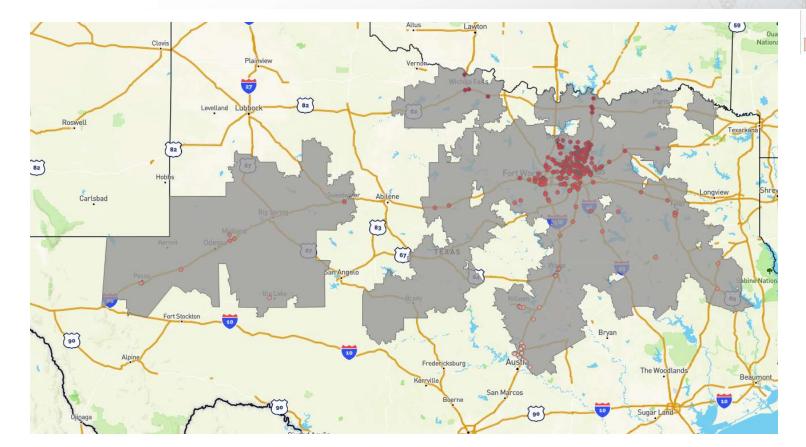
- 1) United States ~ 21,000 charging stations
- 2) Germany ~ 12,000
- 3) Netherlands ~ 8,000
- 4) United Kingdom ~ 7,000
- 5) Italy ~ 4,000

And even though home-installed chargers can be bought for \$500 to \$1,000, and approximately 86% of charging is currently done at home, as more renters and lower income individuals acquire EVs, there will still be an increasing demand for public chargers.


Vendor Presence in Oncor

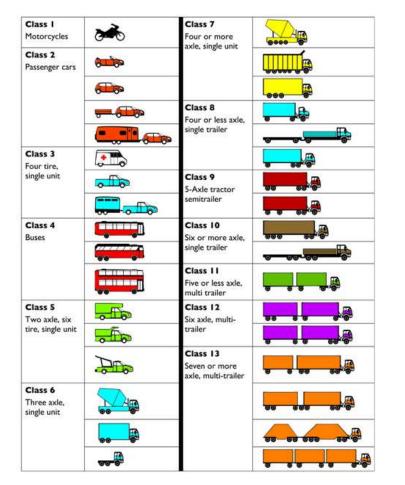
Level 2 AC Charging Stations: 120 V

DC Fast Charging Stations: 240 V


• 244 stations

Note: Tesla charging infrastructure is unique to Tesla vehicle. A Tesla vehicle can use an adapter to use the typical J1772 connection. However, a non-Tesla vehicle cannot use charge at a Tesla station.

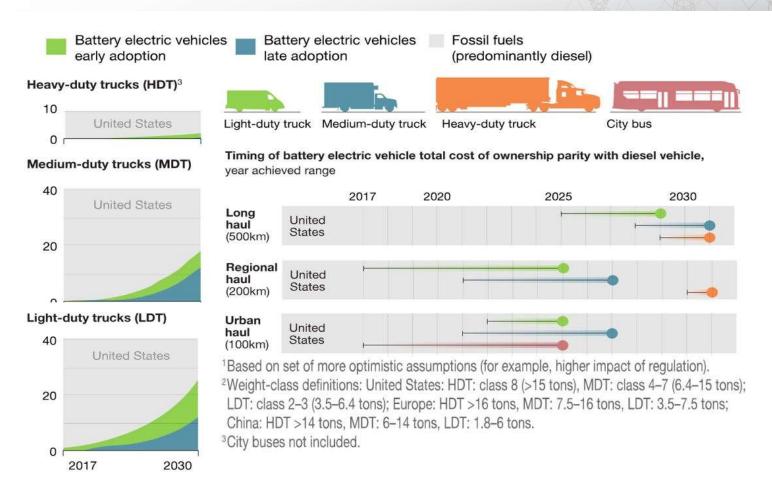
Public PEV Charging Stations in the Oncor Service Territory



Electric Vehicle Charging Station

• DCFC Stations located along highways for intercity travel.

EV Offerings by Vehicle Class

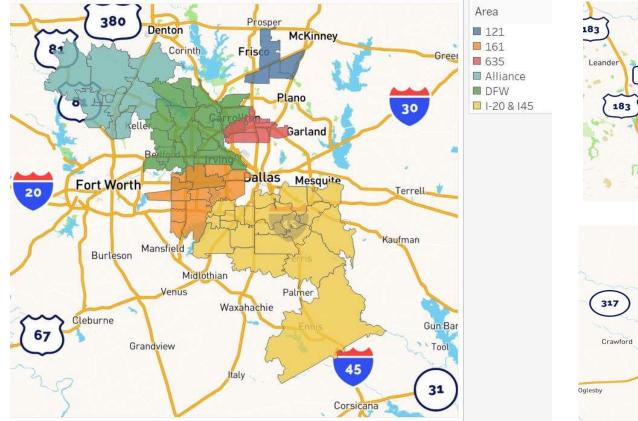


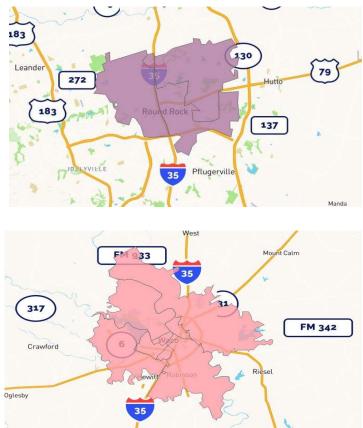
Federal Highway Admin Vehicle Classifications:

- Class 1 Motorcycles: 88 manufacturers listed on EVTrader
- Class 2 Passenger cars 400 models by 2023 (McKinsey)
- Class 3 Four Tire Single Unit: 8 US manufacturers 2020-2022
- Class 4 Buses: Globally 50 manufacturers (Wikipedia)
- Class 5 Two axle six tires single unit: 5 US manufacturers 2020+
- Class 6 Three axle single unit: 5 US manufacturers 2020-2022
- Class 7 Four or more axle single unit: none disclosed
- Class 8 Four or less axle single trailer: 7 US manufacturers 2021+

Note: If not otherwise attributed source is multiple publications assembled by Oncor

EV Fleet Adoption Timelines


Freight Traffic



Approximately 13% of all freight traffic passes through Texas. Primary corridors are I-35 and I-45 north – south and I-20 and I-30 east - west, which pass through Dallas and Fort Worth

Fleet Hot Spots in Oncor Service Area

Co-location of Logistics and Distribution Centers

These pockets are very dense and could impact substations if multiple customers electrify only a few vehicles each simultaneously.

EV Charging Market Participants

- Personal Vehicles: OEMs to include Tesla, VW, GM, Daimler, BMW, Hyundai/Kia, Nissan, Ford
- Fleet Vehicles: OEMs to include Daimler Trucks, Peterbilt, Volvo, Tesla, Rivian, Arrival (UK)
- Fleet Lessors: Penske, Ryder, IdeaLease and others
- Fleet operators: AT&T, UPS, FedEx, PepsiCo, Comcast, Verizon, Amazon, etc.
- Buses: (Transit) Proterra, NewFlyer, BYD, (School bus) Thomas Built, Bluebird, Lion
- Auto Dealers: existing vehicle owners and prospective buyers
- Charging Ports: Tesla, ChargePoint, Electrify America, Greenlots, EVgo
- Charging Equipment: ABB, Siemens, Eaton
- Charging hosts: Walgreens, Walmart, local governments, parking garages, employers, Multifamily housing
- Utilities: SoCalEd, PG&E, Southern Company, Duke (Leaders)
- Utility commissions: Approval of utility owned and deployed public charging
- Federal and State governments: Incentives to purchase EVs

Oncor & Personal EVs

Oncor provides information about personal electric vehicles at oncor.com/ev

This information is imported to Oncor from trusted 3rd-party, market-neutral sources

oncor.com/EV

Bill Muston 214-486-3015 william.muston@oncor.com

Appendix

The February 2021 ERCOT Winter Event

IEEE SmartGrid – Panel on The Texas Electric Power Crisis

https://smartgrid.ieee.org/resources/webinars/panel-on-the-texas-electric-power-crisis

Exploring Tradeoffs in the Texas Energy System. McCombs Energy Initiative, Salem Center for Policy, The University of Texas at Austin

https://www.youtube.com/watch?v=GP_UpRMsfYY

More About Lithium-Ion Batteries

Perspective on lithium-ion battery evolution and future

The Interchange Podcast, March 11, 2021, Are Batteries at a Turning Point?

https://www.greentechmedia.com/podcast/the-interchange