5G Boot Camp

UNDERSTANDING 5G NEW RADIO RELEASE 15/16 STANDARDS

Keysight Technologies

DEC 2019

1.00411

Understanding 5G NR Standards

76

AGENDA

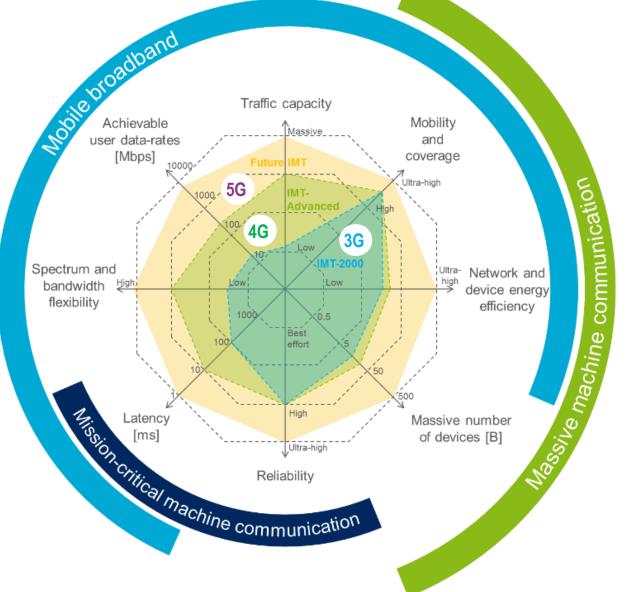
- Technology Overview & Timeline
- Carrier Aggregation & Bandwidth Adaptation
- Numerology & Frame Structure
- Waveforms & Modulations
- Beams, Beamforming & Beam Management
- Initial Access Procedure, Example Call Flows
- Network Architecture, Deployment Options
- New Features Coming in Rel-16

5G Scenarios and Use Cases

BROAD RANGE OF NEW SERVICES AND PARADIGMS

Amazingly Fast Great Service in Crowd		а	Best Experience Follows You		itous Things municating	Real-time & Reliable Communications
eMBB Mobile Broadband Access		mMTC Massive Machine Communication		URLLC Mission-Critical Machine Communication		
All data, all the time		 30 billion 'things' connected 		 Ultra-high 	reliability	

• 2 billion people on social media


KEYSIGHT

Low cost, low energy

• Ultra-low latency

3

5G Scalability and Adaptability- Brief / Example

5G Specifications

ALIGNED WITH IMT VISION

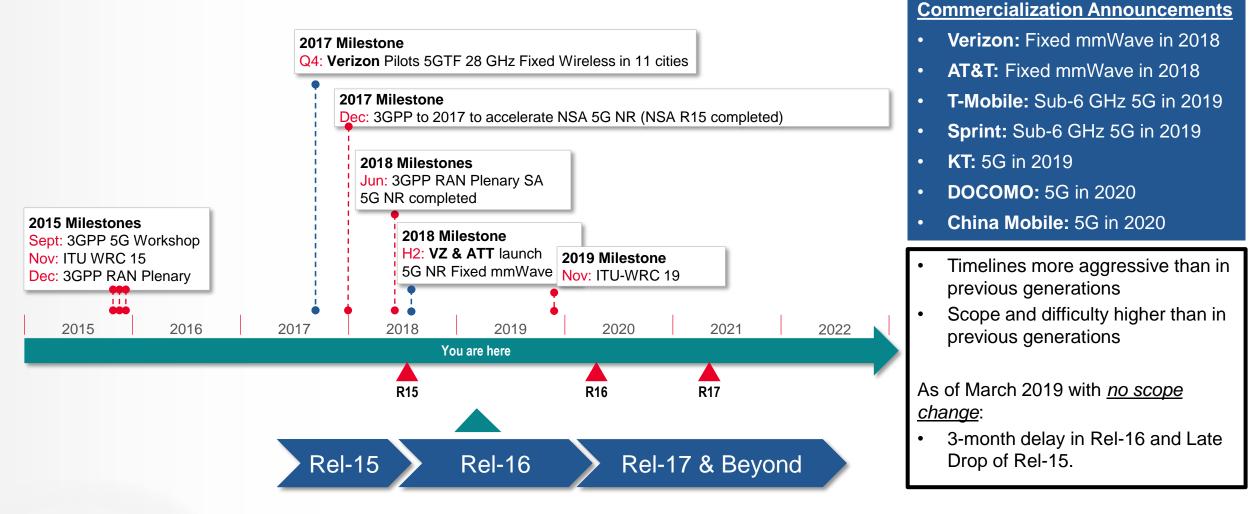
- IMT 2020 are still defining specs
- IMT: International Mobile Telecommunications Initiative (by ITU)

Phase 1 – mid 2018

(EYSIGH)

- Focus on eMBB and low latency aspects
- Minimized changes to core architecture (LTE-EPC) – NSA operation initially
- 5G RAT focus on "conventional" frequency channels

Phase 2 – mid 2020


- Focus on new verticals (IIoT, V2X, etc.)
- Novel layers and architecture to allow full 5G potential (vehicular and multicast services)
- "mmWave" 28, 37, 39 GHz channels and unlicensed spectrum

5G Timing: Drivers

KEY MILESTONES AND CARDINAL DATES

Sub-6 GHz & mmWave 5G Frequency Allocations (eMBB)

AVAILABILITY OF GREENFIELD TDD SPECTRUM

		5G Spectru	um Availabi	lity < 6GHz	2			
- ·		New	Exis	sting	BW	Total BW		
Region	F LOW	F _{HIGH}	F _{LOW}	F _{HIGH}	MHz	MHz	-	Regi
Korea	3400	3700			300	300		Kor
Funene			2570	2620	50	450		
Europe	3400	3800			400	450		Euro
			2496	2690	194			
Japan	3600	4200	3400	3600	800	1494		Jap
	4400	4900			500			
110			2496	2690	191	244		U
US	3550	3700 (1)			150	344		
			2300	2400	100			
China			2555	2655	100	700		Ch
China	3300	3600	3400	3600	300			
	4800	5000			200			
								Un-licer
In-licensed			5725	5875	150	150		Un-licens

5G Spectrum Availability mmWave						
Deview	Ne	W	Exi	sting	BW	Total BW
Region	F _{LOW}	F _{HIGH}	F _{LOW}	F _{HIGH}	GHz	GHz
Korea	26.5	29.5			3.00	3.00
	24.25	27.5			3.25	
Europe	31.8	33.40			1.6	7.85
	40.5	43.5			3.00	
Japan	27.50	29.50			2.0	2.0
	27.50	28.35			0.85	
US	37.00	38.60			1.6	3.85
	38.6	40.00			1.4	
China	24.75	27.5			2.75	8.25
China	37.00	42.5			5.5	8.25
	43.5	47			3.5	3.5 (China)

57.0

64.0

64.0

71.0

* T-Mobile plans to use 600MHz spectrum which is an FDD band

KEYSIGHT TECHNOLOGIES 14.0

Adapted from IWPC 5G UE, SWKS Mar 2017 (David Pehlke)

7.0

5G New Radio

AT A GLANCE - KEY DISTINCTIVE FEATURES

- 2 frequency ranges:
 - FR1 (410 MHz 7.125 GHz)
 - Bands numbered from 1 to 255
 - No longer can be commonly referred to as sub-6 GHz!
 - FR2 (24.250 52.600 GHz) \rightarrow Soon to be extended to 114.25 GHz
 - Bands numbered from 257 to 511
 - Commonly referred to as mmWave
- Scalability required for different use cases/frequency bands
 - Scalable numerology sub-frame structure and component carrier bandwidth
 - Introduction of mini-slots for low latency
- Channel bandwidths up to 400 MHz for single component carrier
- 3D Beamforming antennas MU-MIMO steerable on per UE basis, massive MIMO
- Layer 3 (OTA) based on 4G but enhanced for control plane efficiency
- Lower layers / 5G NR greatly enhanced for the required data rates, latency, and efficiency

3GPP TS 38.521-2 Table 5.3.5-1

	FR2: NR band / SCS / UE Channel bandwidth						
Ν	١R	SCS	50	100	200	400	
Ba	and	kHz	MHz	MHz	MHz	MHz	
n	257	60	Yes	Yes	Yes	N/A	
	257	120	Yes	Yes	Yes	Yes	
ní	258	60	Yes	Yes	Yes	N/A	
	200	120	Yes	Yes	Yes	Yes	
n	260	60	Yes	Yes	Yes	N/A	
	200	120	Yes	Yes	Yes	Yes	
ní	261	60	Yes	Yes	Yes	N/A	
	201	120	Yes	Yes	Yes	Yes	

Specifications – www.3gpp.org

Specification	Title
38.300	Overall Description
38.902	Study on New Radio Access Technology
38.211	Physical Channels and Modulation
38.212	Multiplexing and Channel Coding
38.213	Physical Layer Procedures for Control
38.214	Physical Layer Procedures for Data
38.321	NR Medium Access Control (MAC)
38.322	NR Radio Link Control (RLC)
38.323	NR Packet Data Convergence Protocol (PDCP)
37.324	NR Service Data Protocol (SDAP)
38.331	NR Radio Resource Control (RRC)
24.301	Non-Access Stratum (NAS)
33.501	Security Architecture and Procedures for 5G
37.340	NR Multi-connectivity Overall Description

3GPP RAN Working Groups Overview

RAN Plenary is responsible for all Radio Access Networks, including their internal structures and functions, of systems for evolved GERAN, UTRAN, E-UTRAN, 5GC and beyond. All groups participate in plenary meetings.

RAN WG	Responsibilities
RAN1 Radio Layer 1	Specification of the physical layer of the radio interface – channels structures, mapping transport channels to physical channels, multiplexing, modulation schemes, etc
RAN2 Radio Layer 2 and Layer 3	Specification of the radio interface architecture and radio interface protocols – interface between architecture and protocols
RAN3 Core, O&M Requirements	Overall architecture and radio interface protocols – defines next generation interface protocols
RAN4 Radio Performance and Protocol	Development of UE and base station specifications, base station conformance test specifications, and specifications for electromagnetic compatibility (EMC)
RAN5 Mobile Terminal Conformance Tests	Development of UE conformance test specifications including signaling and protocol test cases, and inter-RAT procedures

LTE vs. NR Comparison

	LTE (Based on 3GPP Rel-15)	New Radio (Based on 3GPP Rel-15)
Frequency Band	Sub-6 GHz	FR1, FR2
Max Bandwidth (CC)	20 MHz	FR1: 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100 MHz FR2: 50, 100, 200, 400 MHz
Max CCs	5 (Rel-10) / 32 (Rel-12). 5 current implementation	8
Subcarrier Spacing	15 kHz	2 ⁿ · 15 kHz
Waveform	CP-OFDM for DL; SC-FDMA for UL	CP-OFDM (DL); CP-OFDM and DFT-s-OFDM (UL)
Modulation	Up to 256 QAM DL (moving to 1024 QAM); Up to 64 QAM UL	Up to 256 QAM UL & DL
Max Number of Subcarriers	1200	3276
Subframe Length	1 ms (moving to 0.5 ms)	1 ms
Latency (Air Interface)	10 ms (moving to 5 ms)	1 ms
Slot Length	7 symbols in 500 µs	14 symbols (duration depends on SC spacing)2, 4 and 7 symbols for mini-slots
Channel Coding	Turbo Code (data); TBCC (control)	LDPC (data); Polar Codes (control)
Initial Access	No beamforming	Beamforming
ΜΙΜΟ	Up to 8x8	Up to 8x8
Reference signals	UE Specific DMRS and Cell Specific RS	Front-loaded DMRS (UE-specific)
Duplexing	FDD, Static TDD	FDD, Static TDD, Dynamic TDD

3GPP 5G NR Specification

SINGLE SPECIFICATION COVERING FR1 AND FR2

	FR1 – Frequency Range 1	FR2 – Frequency Range 2
Spec	5G NR NSA and SA	5G NR NSA
Frequency	410 MHz ~ 7125 MHz e.g. 3.4 – 3.7 GHz, 4.4 – 4.9 GHz	24.520 GHz ~ 52.600 GHz e.g. 39 GHz (3 GHz of spectrum), 28 GHz (800 MHz)
Bandwidth (cc)	Up to 100 MHz	Up to 400 MHz
Maximum CCs	8	8
DL MIMO	8x8	2x2
Numerology (subcarrier spacing)	2 ⁿ · 15 kHz n = {0, 1, 2} 15 kHz (n=0, 1x LTE), 30 kHz (n=1, 2x LTE)	2 ⁿ · 15 kHz n = {2, 3, 4}; 60 kHz (n=2, 4x LTE) 120 kHz (n=3, 8x LTE), 240 kHz (n=4, 16x LTE)
Waveform	DL: CP-OFDM / UL: CP-OFDM or DFT-s-OFDM	DL: CP-OFDM / UL: CP-OFDM or DFT-s-OFDM
Subcarriers	3276	3276
Subframe length	1ms	1ms
Slot length (t)	Max @60 kHz SCS: 250µs	Max @240 kHz SCS: 62.5 μs

3GPP 5G Channel Bandwidth Requirements

- For FR1, 100 MHz is the maximum channel bandwidth specified
- For FR2, 50, 100, 200 and 400 MHz channel bandwidths are specified

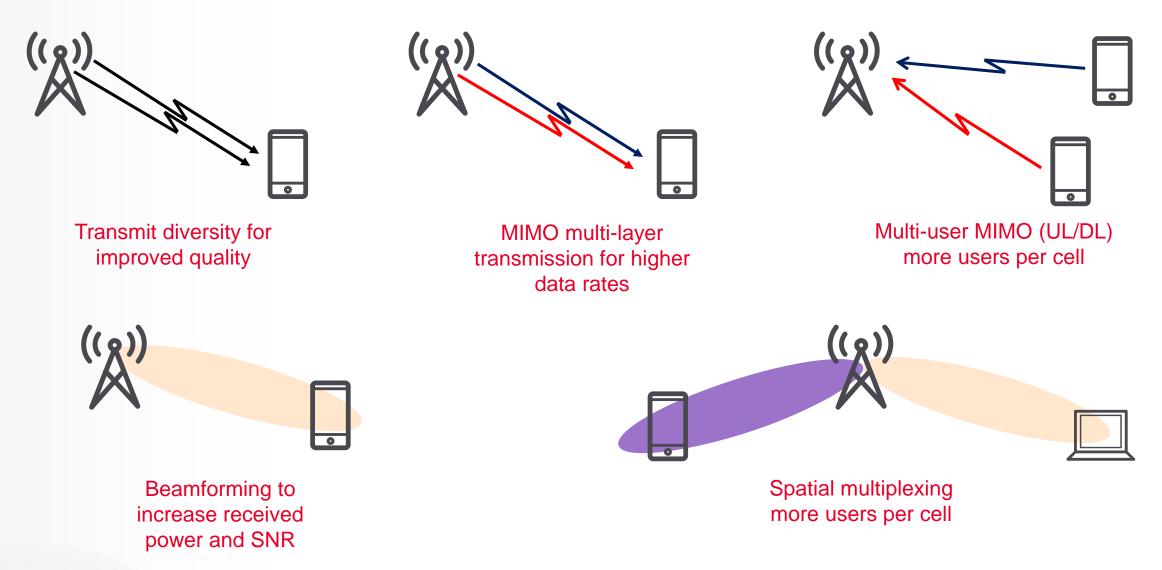
3GPP TS 38.521-2 Table 5.3.5-1

	NR Band / SCS / UE Channel Bandwidth					
NR Band	SCS kHz	50 MHz	100 MHz	200 MHz	400 MHz	
n257	60	Yes	Yes	Yes	N/A	
1237	120	Yes	Yes	Yes	Yes	
~2E0	60	Yes	Yes	Yes	N/A	
n258	120	Yes	Yes	Yes	Yes	
2260	60	Yes	Yes	Yes	N/A	
n260	120	Yes	Yes	Yes	Yes	
n261	60	Yes	Yes	Yes	N/A	
11201	120	Yes	Yes	Yes	Yes	

3GPP TS 38.521-1 Table 6.1-1

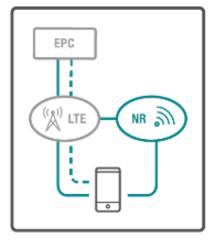
Channel Bandwidth
5 MHz
10 MHz
15 MHz
20 MHz
25 MHz
30 MHz
40 MHz
50 MHz
60 MHz
80 MHz
100 MHz

MIMO Variants

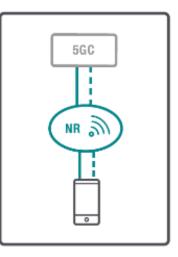

NO ARBITRARY DECISION - DRIVEN BY PROPERTIES OF CHANNEL

	FR1	FR2
Deployment Scenario	Macro cells High user mobility	Small cells Low user mobility
MIMO Order	Up to 8x8	Typically 2x2
Number of Simultaneous Users	Tens of users Large coverage area	A few users Small coverage area
Main Benefit	Spatial multiplexing, MU-MIMO	Beamforming for single user
Channel Characteristics	Rich multipath propagation	A few propagation paths
Spectral Efficiency	High due to the spatial multiplexing	Low spectral efficiency (few users, high path loss)

Multi-antenna Transmissions



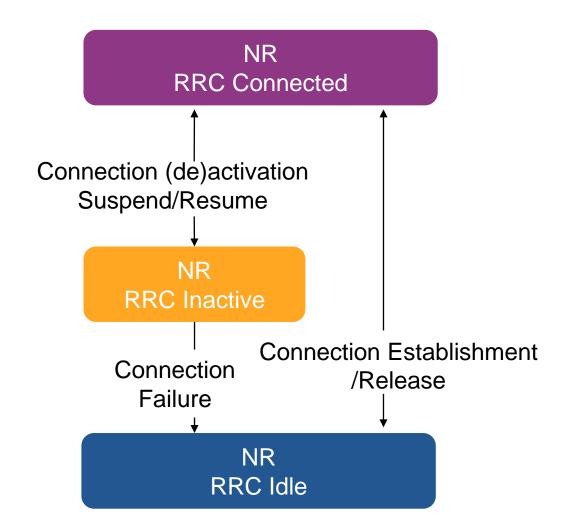
Non-Standalone (NSA) and Standalone (SA) Modes


JUST AN INTRO: MORE DISCUSSED LATER

- LTE coverage
 - Large existing network deployment
 - Wide coverage due to lower frequency range
- 5G network
 - System deployment will take time
 - Range is more restricted in higher frequency bands
- NSA Dual Connectivity (DC) uses both systems for evolution, reliability and geographical coverage
 - Expectation: slow and smooth transition into 5G

NSA: Dual Connectivity Across LTE and NR

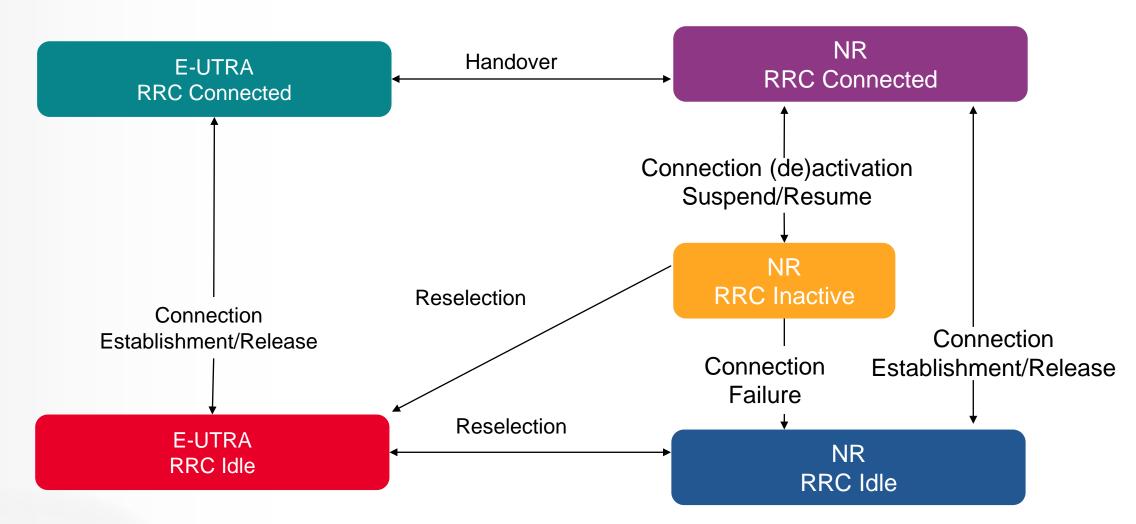
RAT	NSA	SA
	Connection to both LTE and 5G mandatory	Can work with 5G only (LTE not necessary)
Control (Location Registration)	5G focused on U-Plane alone, LTE used for control including call origination/termination, location registration, etc.	5G used for both U-Plane and C- Plane
5G radio control parameters	5G radio control parameters exchanged through LTE, functions added to eNB	5G radio control parameters exchanged through 5G
Paging Channels	UE monitors paging channels on LTE	UE monitors paging channels on 5G



Radio Resource Control (RRC) States

5G NR SA

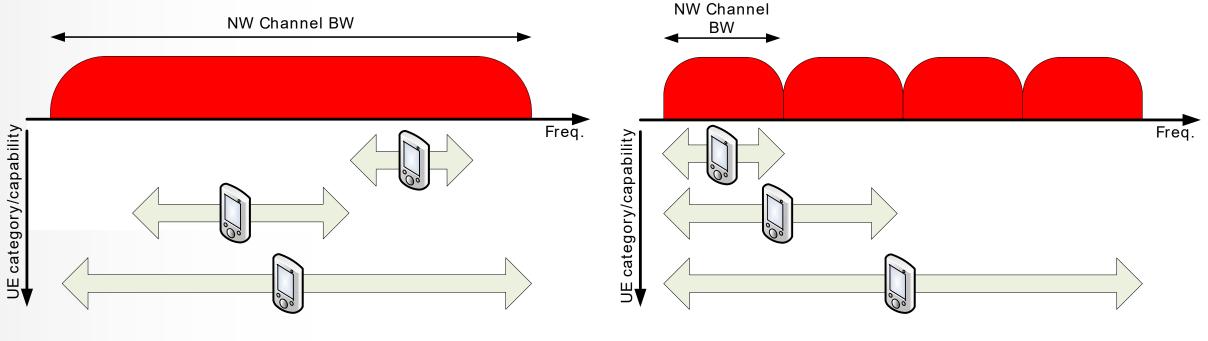
Device


- monitors control channels for data scheduling
- provides channel quality estimate to gNB
- provides neighbor cell measurements
- Device
- performs RAN based notification area updates when moving outside the notification area
- stores the AS context
- Device
- acquires SI
- monitors paging
- performs neighbor cell measurements
- performs cell (re-)selection

RRC States NR to E-UTRA

5G NR SA

Understanding 5G NR Standards


76

AGENDA

- Technology Overview & Timeline
- Carrier Aggregation & Bandwidth Adaptation
- Numerology & Frame Structure
- Waveforms & Modulations
- Protocol Structures, Layers, Signals & Channels
- Beams, Beamforming & Beam Management
- Initial Access Procedure, Example Call Flows
- Network Architecture, Deployment Options
- New Features Coming in Rel-16

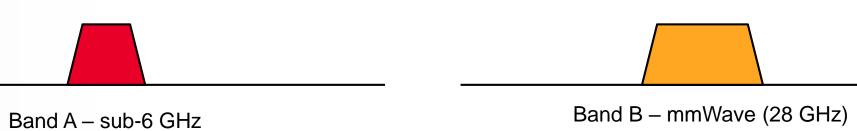
Single-Carrier and Multi-Carrier Operation

- Maximum single-CC bandwidth is 400 MHz
- Maximum number of CCs is 8

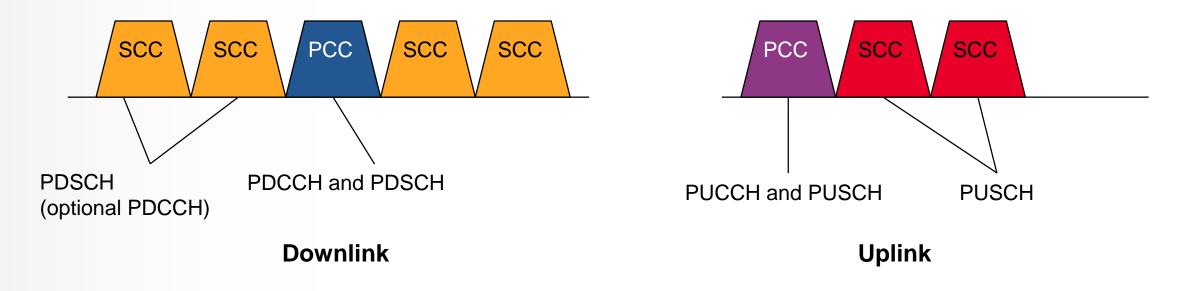
Single-Carrier Operation

Multi-Carrier Operation

Carrier Aggregation Types


• Component Carriers may be in the same band and adjacent

• Or they could be in the same band, non-contiguous

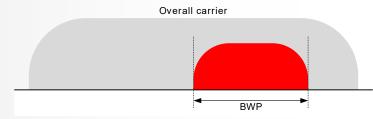

• Or in different bands

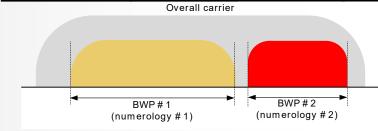
Channel Allocation

- RRC Connection and Registration only performed on Primary Component Carrier (PCC)
- Control channels (PDCCH and PUCCH) on Primary CC
- Data channels (PDSCH and PUSCH) on all component carriers

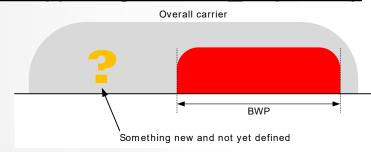
Bandwidth Part

CONTIGUOUS PHYSICAL RESOURCE BLOCKS (PRBS)


- An Initial Bandwidth Part is signaled by PBCH
- It contains CORESET (Control Resource Set) and PDSCH
- The bandwidth part may or may not contain (Beamforming) SS/PBCH block
- Reserved resources can be configured within the bandwidth part
- <u>One</u> or <u>multiple</u> bandwidth part configurations for each component carrier can be semi-statically signaled to a UE
 - Only one BWP in DL and one in UL is active at a given time
- Other configuration parameters include:
 - Numerology: CP type, subcarrier spacing
 - Frequency location: the offset between BWP and a reference point within cell BW
 - Bandwidth size: in terms of PRBs

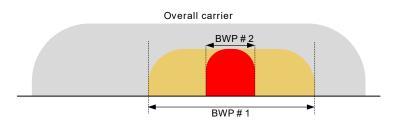

Bandwidth Part

BANDWIDTH PART USE CASES

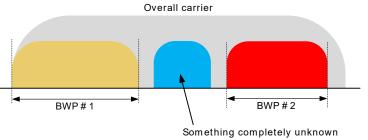

1. Supporting Reduced UE Bandwidth Capability

3. Supporting Different Numerologies

5. Supporting Forward Compatibility



KEYSIGH1


BWP activation/deactivation:

- UE may be configured with up to 4 DL and 4 UL bandwidth parts
- Activation by dedicated RRC signaling
- Activation/deactivation by DCI with explicit indication
- · Activation/deactivation by a timer for a UE to switch its active DL BWP to a default BWP

2. Supporting Reduced UE Energy Consumption

4. Supporting Non-contiguous Spectrum

Supplemental Uplink

- The UE may be configured with additional supplemental uplink
 - An additional lower frequency band UL carrier
 - Enhances data rate and deployment range in NSA mode
 - Improve performance at cell edge in SA mode
- Supplemental uplink is different from carrier aggregation because the UE may transmit on
 - The supplemental uplink OR
 - UL component carrier (but not on both at the same time)

Operating	Uplink (UL)	Downlink (DL)	Duplex
Band	BS Receive / UE Transmit	BS Transmit / UE Receive	Mode
n80	1710 – 1785 MHz	N/A	SUL
n81	880 – 915 MHz	N/A	SUL
n82	832 – 862 MHz	N/A	SUL
n83	703 – 748 MHz	N/A	SUL
n84	1920 – 1980 MHz	N/A	SUL
n86	1710 – 1780 MHz	N/A	SUL

NEW

 \mathbf{O}

Understanding 5G NR Standards

16

AGENDA

- Technology Overview & Timeline
- Carrier Aggregation & Bandwidth Adaptation
- Numerology & Frame Structure
- Waveforms & Modulations
- Protocol Structures, Layers, Signals & Channels
- Beams, Beamforming & Beam Management
- Initial Access Procedure, Example Call Flows
- Network Architecture, Deployment Options
- New Features Coming in Rel-16

Numerology Definition

SCALABLE SUB-CARRIER SPACING (SCS) - ΔF

FR1 Operation

	μ	Δf = 2 ^μ ·15 kHz	Cyclic Prefix	N ^{max, μ} RB	N ^{subframe, μ} slot
Initial	0	15 kHz	Normal	275	1
Access	1	30 kHz	Normal	275	2
	2	60 kHz	Normal, Extended	275	4

FR2 Operation

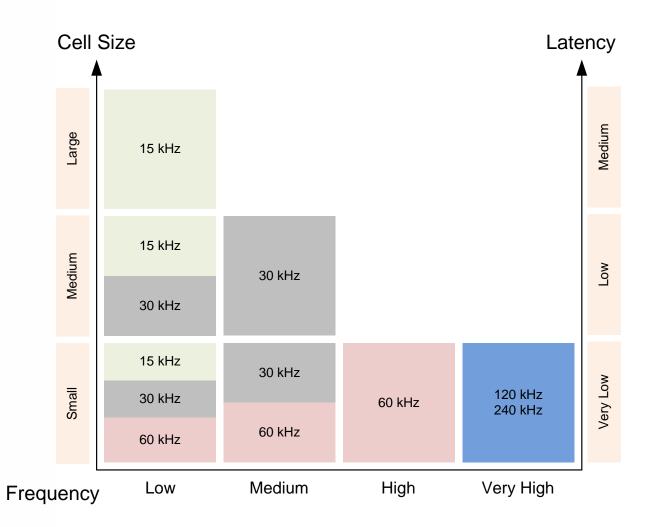
	μ	Δf = 2 ^μ -15 kHz	Cyclic Prefix	N _{RB} ^{max, μ}	N ^{subframe, μ} slot	
	2	60 kHz	Normal, Extended	275	4	
Initial Access	3	120 kHz	Normal	275	8	
	4	240 kHz	Normal	138	16	
	5	480 kHz	Normal	69	32	

Flexible Numerology

MAXIMUM TRANSMISSION BANDWIDTH CONFIGURATION NRB

Spectrum utilization for FR1 (410 MHz – 7.125 GHz): 3GPP 34.38.521-1 table 5.3.2-1

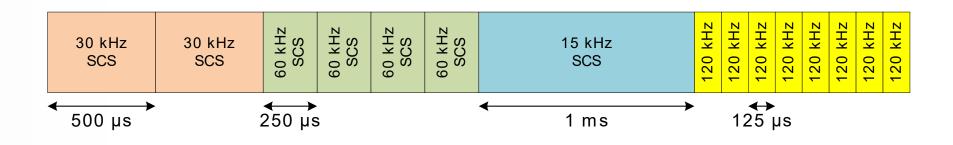
808	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	40 MHz	50 MHz	60 MHz	80 MHz	100 MHz
SCS	N _{RB}									
15 kHz	25	52	79	106	133	216	270	N/A	N/A	N/A
30 kHz	11	24	38	51	65	106	133	162	217	273
60 kHz	N/A	11	18	24	31	51	65	79	107	135


Spectrum utilization for FR2 (24.25 GHz – 52.6 GHz): 3GPP 34.38.521-2 table 5.3.2-1

SCS	50 MHz	100 MHz	200 MHz	400 MHz
363	N _{RB}	N _{RB}	N _{RB}	N _{RB}
60 kHz	66	132	264	N/A
120 kHz	32	66	132	264

5G NR Max number of Sub Carriers = 3276 (273 PRBs)

Use Cases for Different Subcarrier Spacing



Scalable Sub-Carriers – Variable Numerology (µ)

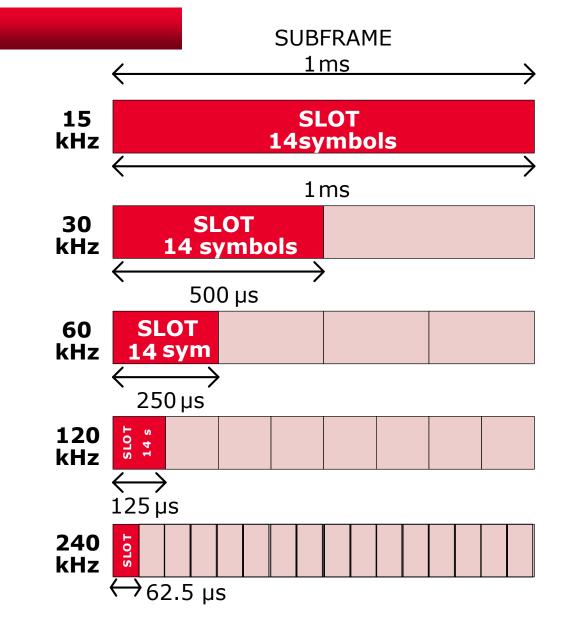
- Sub-carrier spacing = 2^µ x 15 kHz
- Slot is 14 symbols slot length decreases as subcarrier spacing increases

μ	Subcarrier spacing	Slot length	Number of slots per subframe	Usage	
0	15 kHz	1 ms	1	Outdoor large cell <3 GHz	
1	30 kHz	500 µs	2	Outdoor small cell >3 GHz	FR1
2	60 kHz	250 µs	4	Indoor wideband cell 5 GHz Small cell above 6 GHz	
3	120 kHz	125 µs	8	Very small cell 28 GHz	
4	240 kHz	62.5 µs	16	Indoor very small cell mmWave	FR2

Frame Structure

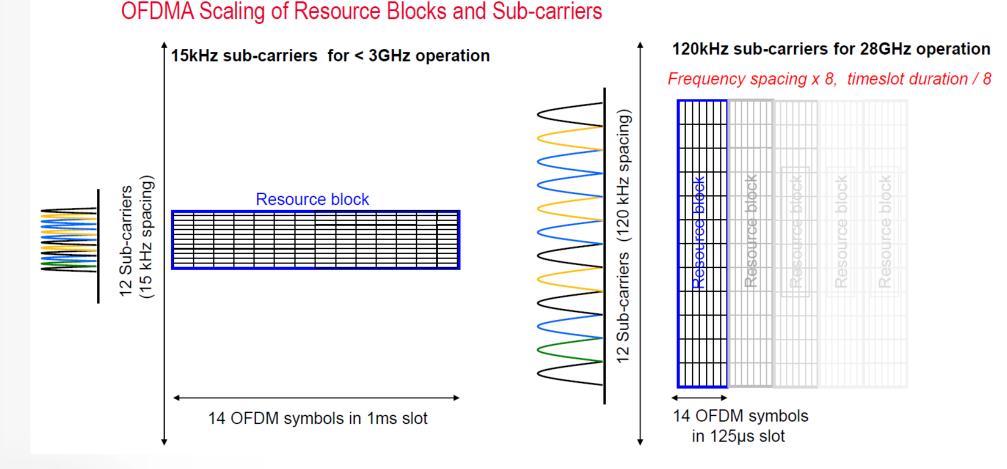
FRAME STRUCTURE & NUMEROLOGY

Slot structure is flexible to provide for better spectrum utilization


- <u>SCS</u>: 15 kHz*2ⁿ
- <u>Frame</u>: 10 ms
- Subframe: Reference period of 1 ms
- <u>Slot</u> (slot based scheduling)
 - 14 OFDM symbols, or 12 with extended CP
 - One possible scheduling unit
 - Slot length scales with the subcarrier spacing
- <u>Mini-Slot</u> (non-slot based scheduling)
 - DL: 7, 4 or 2 OFDM symbols, can start immediately

NEW

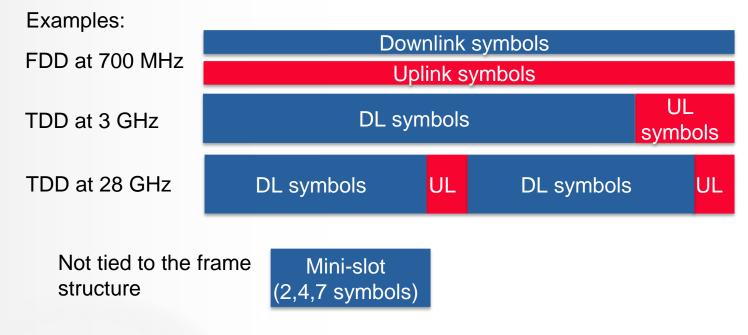
• UL: any length


KEYSIGH

• Minimum scheduling unit

Scaling of Resource Blocks and Subcarriers

15 KHZ VS 120 KHZ SUBCARRIER SPACING


Slot Usage

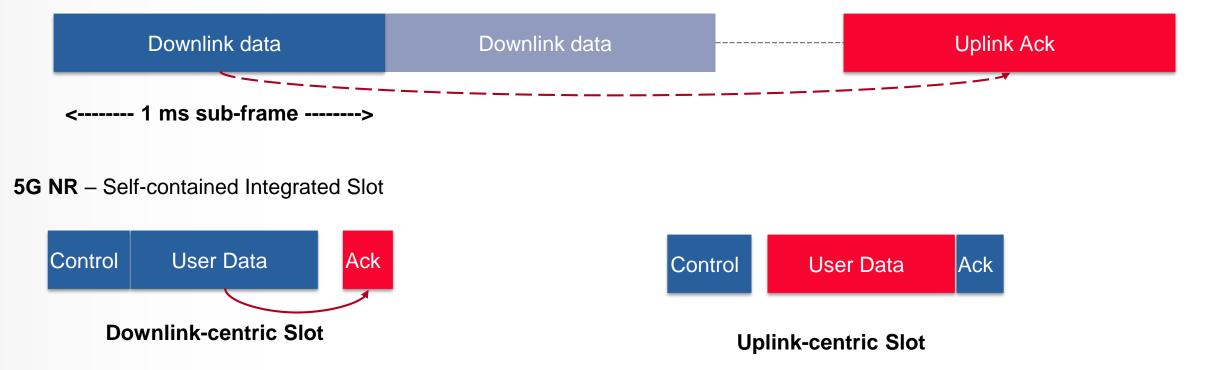
FDD AND TDD SLOTS, AND A MIX OF

Slot Format Indication (SFI) informs the UE of the current format (56 formats defined)

- Downlink only (Slot Format 0, used in FDD)
- Uplink only (Slot Format 1, Used in FDD)
- Flexible: Downlink and Uplink (static, semi-static (RRC) or dynamically scheduled (DCI))

Release 15

		Ta	ible 11	.1.1-1:	Slot	ormat	s for r	norma	l cyclio	c prefi	x			
Format	Symbol number in a slot													
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	D	D	D	D	D	D	D	D	D	D	D	D	D	D
1	U	U	U	U	U	U	U	U	U	U	U	U	U	U
2	F	F	F	F	F	F	F	F	F	F	F	F	F	F
3	D	D	D	D	D	D	D	D	D	D	D	D	D	F
4	D	D	D	D	D	D	D	D	D	D	D	D	F	F
5	D	D	D	D	D	D	D	D	D	D	D	F	F	F
6	D	D	D	D	D	D	D	D	D	D	F	F	F	F
7	D	D	D	D	D	D	D	D	D	F	F	F	F	F
8	F	F	F	F	F	F	F	F	F	F	F	F	F	U
9	F	F	F	F	F	F	F	F	F	F	F	F	U	U
10	F	U	U	U	U	U	U	U	U	U	U	U	U	U
11	F	F	U	U	U	U	U	U	U	U	U	U	U	U
12	F	F	F	U	U	U	U	U	U	U	U	U	U	U
13	F	F	F	F	U	U	U	U	U	U	U	U	U	U
	. –		. –		-	• •		•	!					
52	D	F	F	F	F	F	U U	D	F	F	F	F	F	U
53	D	D	F	F	F	F	U	D	D	F	F	F	F	U
54	F	F	F	F	F	F	F	D	D	D	D	D	D	D
55	D	D	F	F	F	U	U	U	D	D	D	D	D	D
56 – 254								erved						
255	UE de	etermin									figuratio		<i>mon</i> , o	r <i>TDD</i> -


UL-DL-ConfigDedicated and, if any, on detected DCI formate

3GPP TS 38.213 V15.5.0 (2019-03)

Reduced Latency – Comparation with LTE

LTE – Fixed FDD or TDD operation

- Data is transmitted preceded by the grant for the acknowledgement: the entire process is complete within a single time transmission interval (TTI).
- TTI = # of symbols * symbol length

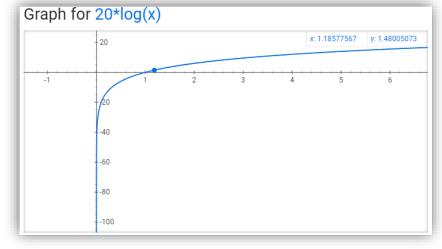
Understanding 5G NR Standards

76

AGENDA

- Technology Overview & Timeline
- Carrier Aggregation & Bandwidth Adaptation
- Numerology & Frame Structure
- Waveforms & Modulations
- Protocol Structures, Layers, Signals & Channels
- Beams, Beamforming & Beam Management
- Initial Access Procedure, Example Call Flows
- Network Architecture, Deployment Options
- New Features Coming in Rel-16

Moving to mmWave Change Everything

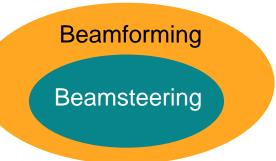

Question: Is it better to have high gain or low gain antenna?

The plan to introduce cellular services in frequency bands >6 GHz is driving an **abrupt and unprecedented change** in how devices and systems have to be designed, operated and tested.

- To overcome these losses and provide a realistic link budget, it is necessary to use high gain antennas comprised of multiple elements at both ends of the link
- High gain antennas create narrow beam width signals
- Radio propagation at mmWave is very different: very sparse and spatially dynamic, unlike rich multipath with Rayleigh fading

The Friis propagation equation predicts losses at mmWave frequencies:

$$P_r = P_t + G_t + G_r + 20\log_{10}\left(\frac{\lambda}{4\pi R}\right)$$

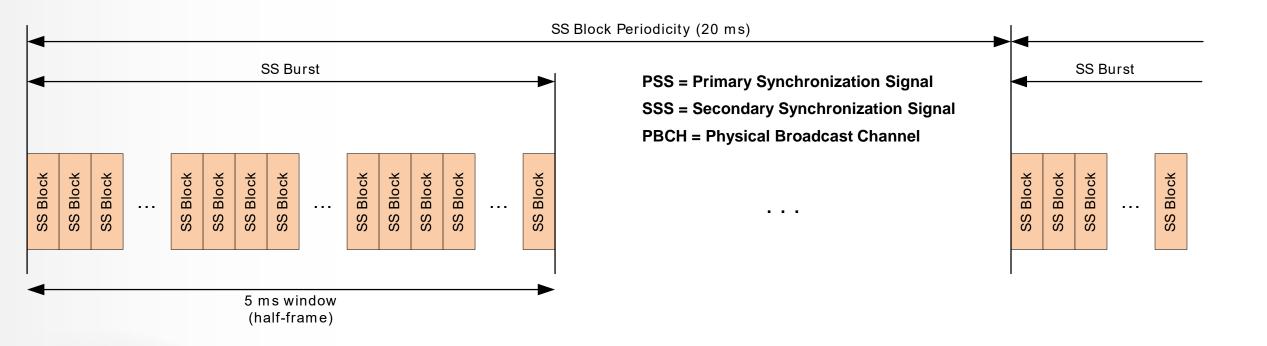

Enter the Spatial Domain

BEAMSTEERING VS. BEAMFORMING

- The simplest use of large antenna arrays at the base station is beamsteering

 create narrow beams within the cell to direct signals to specific locations,
 possibly with reflections involved
- A key difference between beamsteering and beamforming is steering only needs to know the direction of the user while beamforming requires precise real-time channel state information (CSI)
- To then exploit the channel, beamforming requires full digital control of the amplitude and phase of every antenna element while beamsteering can be done using simple analog phase shifters
- In a predominantly line of sight channel with several users in different locations, beamforming would simultaneously generate a beam towards each user much like beamsteering
- The benefits of beamforming become more apparent as the channel becomes more scattered, which is when simpler beamsteering is less effective

5G New Radio Initial Access


DOWNLINK SYNCHRONIZATION SIGNAL (SS) BLOCKS, BURSTS, AND SETS

SS Block

-1 symbol PSS -1 symbol SSS -2 symbols PBCH

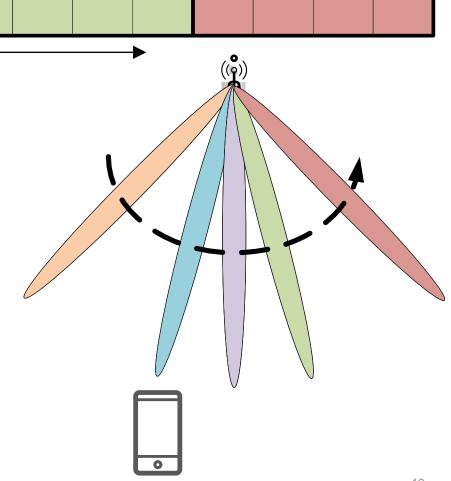
<u>SS Burst</u>

-Multiple SS Blocks -Transmission is periodic (20 ms by default) -Confined within a 5 ms window

5G New Radio Initial Access – SS Burst

SS Block 3

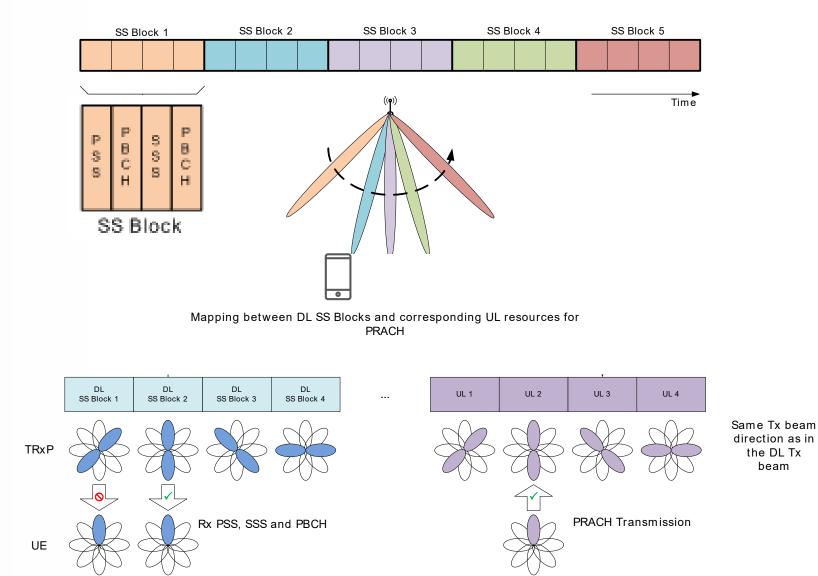
Time


BEAM SWEEPING

SS Block 1

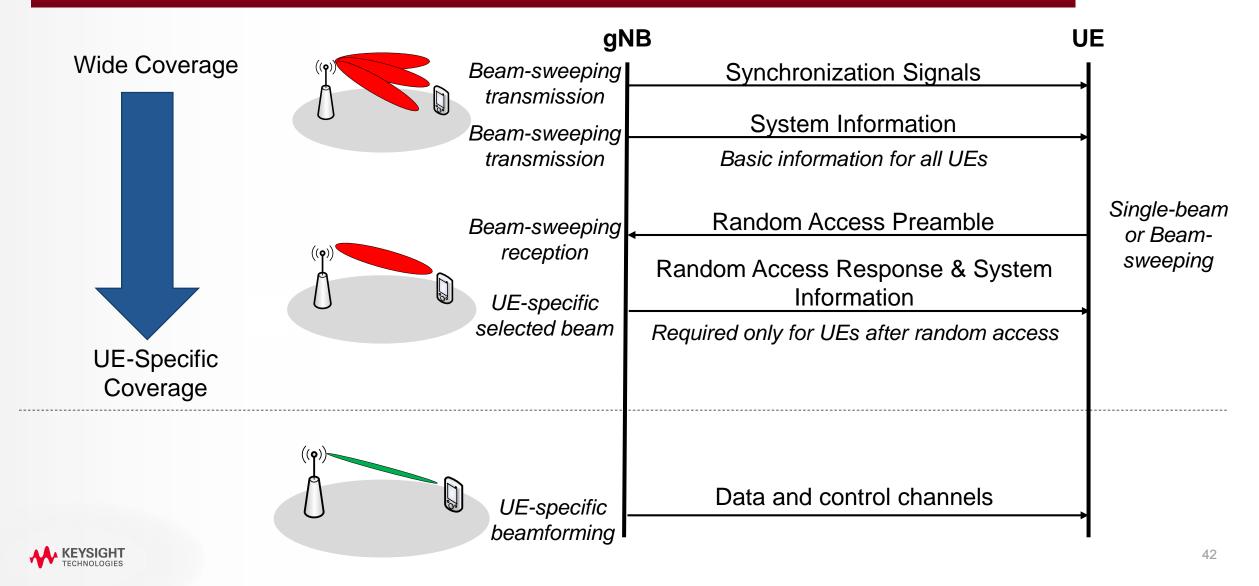
• All SSB are transmitted on the same single-antenna port

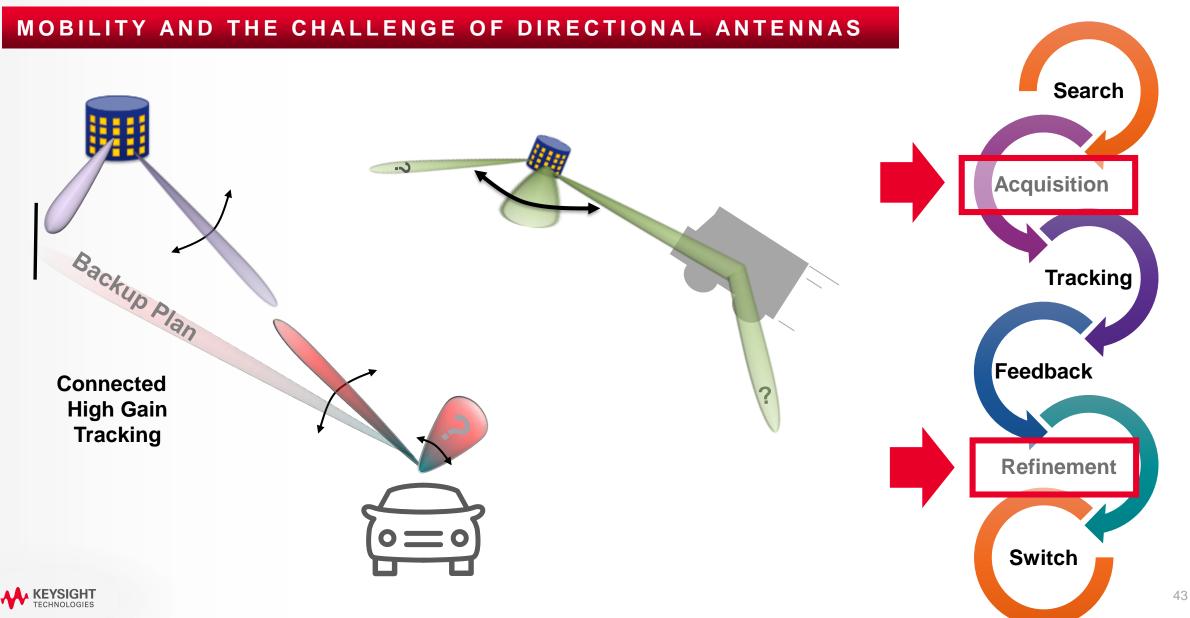
SS Block 2


- Each SSB within a SS Burst Set is potentially transmitted on a different beam
- The same beam pattern is repeated for each SSB within the SS Burst Set period (20 ms by default)
- The UE identifies a SSB within the Burst Set by using:
 - The time index carried by the PBCH DMRS
 - The rest of the SSB index carried by the PBCH data
- The best SSB is used to respond to with the PRACH

SS Block 5

SS Block 4


Initial Access & Beamforming: SS/PBCH Block



5G New Radio Initial Access

SYNCHRONIZATION, RANDOM ACCESS AND UE-SPECIFIC BEAMFORMING

New Radio mmWave Spatial Domain Optimization

To Conclude: Beamforming/Management

- The network and device will use beamforming antennas (maybe as low as 12 degrees?)
- Narrow beams increase the received power (Signal-to-Noise) level
- Beams to different UEs can re-use the same time and frequency resources
- All common and dedicated channels are transmitted (and received) over beams
- Beams are bilateral for (t, f, (x,y,z)) TDD operation only

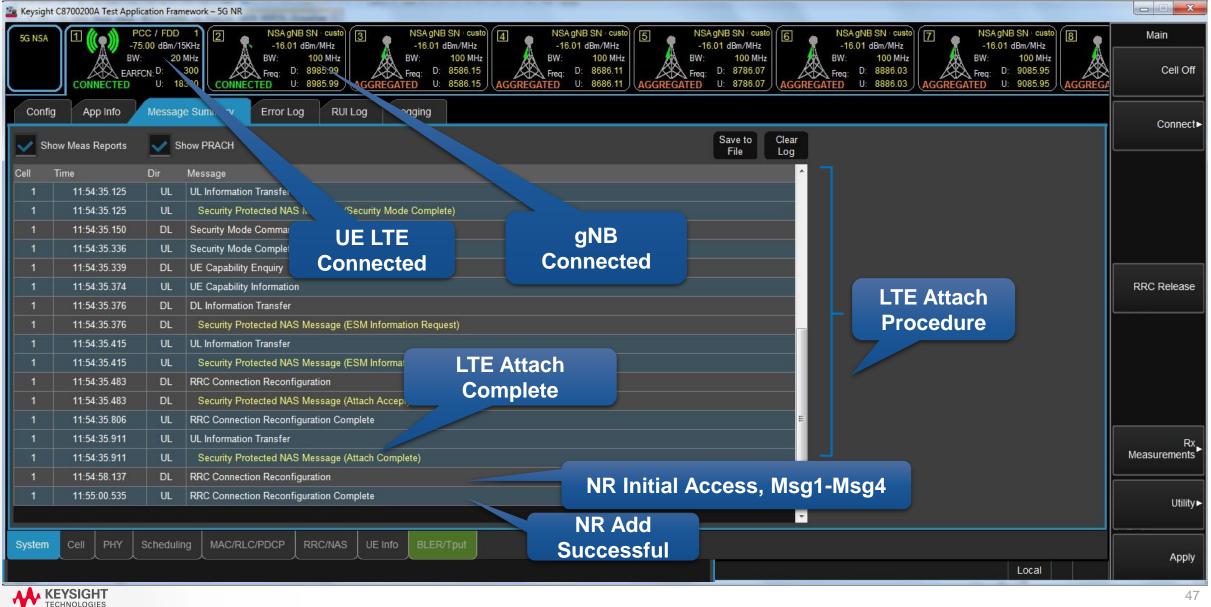
		0
X X X X X X X X X X X X X X X X X X X		•
	Ē	•

To Conclude: 5G Operation at mmWave Frequencies

- mmWave has great potential (spectrum!)
- mmWave signals do not bend around corners (diffract) and are easily blocked or attenuated
- mmWave signals do bounce (reflect) readily giving rise to local scattering (multipath)
- mmWave signals act more like light rays so can be directed using special antennas
- Path loss through the air is much greater at mmWave than at LTE bands
- Changing from 1 GHz to 28 GHz path loss increases by 28 dB over 1 m

Cables are lossy and expensive, galvanic connectors may not be exposed/available, 3GPP requires FR2 tests to be radiated

Therefore, testing will be mostly performed over the air


Understanding 5G NR Standards

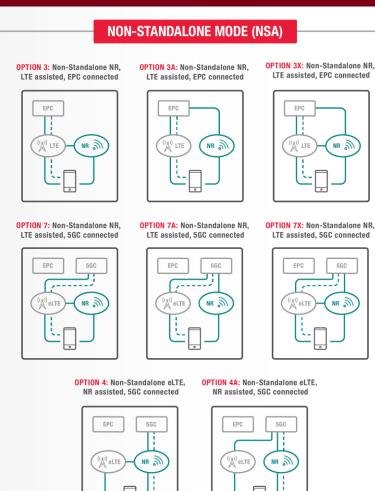
76

AGENDA

- Technology Overview & Timeline
- Carrier Aggregation & Bandwidth Adaptation
- Numerology & Frame Structure
- Waveforms & Modulations
- Protocol Structures, Layers, Signals & Channels
- Beams, Beamforming & Beam Management
- Initial Access Procedure, Example Call Flows
- Network Architecture, Deployment Options
- New Features Coming in Rel-16

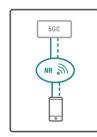
NR NSA Attach Procedure – Keysight Test Application

Understanding 5G NR Standards

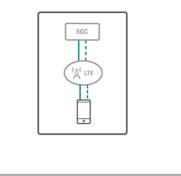

76

AGENDA

- Technology Overview & Timeline
- Carrier Aggregation & Bandwidth Adaptation
- Numerology & Frame Structure
- Waveforms & Modulations
- Protocol Structures, Layers, Signals & Channels
- Beams, Beamforming & Beam Management
- Initial Access Procedure, Example Call Flows
- Network Architecture, Deployment Options
- New Features Coming in Rel-16


5G NR Deployment Options

START WITH NSA



STANDALONE MODE (SA)

OPTION 2: Standalone NR

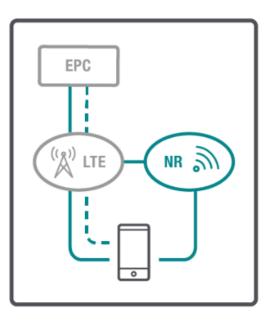
OPTION 5: Standalone LTE Rel-15, connected

Rel-15 Early Drop (December 2017)

- NR NSA eNB as master node
- 4G Core Network (EPC)
- Enhanced LTE (eLTE)

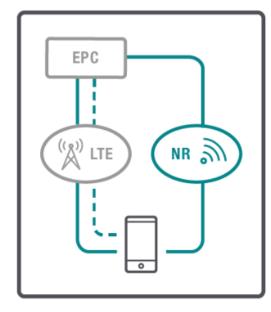
Rel-15 (June 2018)

- 5G Core Network
- Enhanced LTE (eLTE)
- NR SA and NSA Combinations

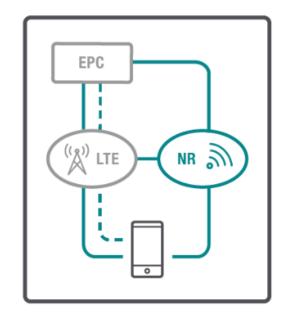

Multi-RAT Dual Connectivity with LTE Core (EPC)

OPTIONS 3/3A/3X

- Dual Connectivity with EPC: E-UTRA-NR Dual Connectivity (EN-DC)
 - Master Node: eNB (LTE)
 - Secondary Node: gNB (5G NR)


x2 interface

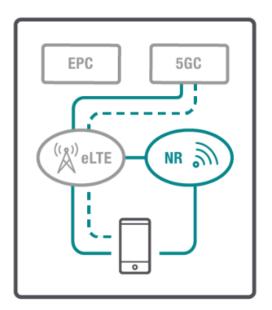
OPTION 3: Non-Standalone NR, LTE assisted, EPC connected


No load-sharing

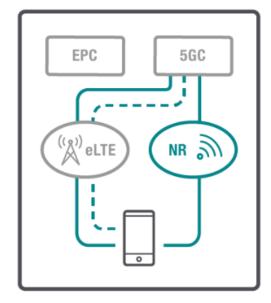
OPTION 3A: Non-Standalone NR, LTE assisted, EPC connected

PDCP split

OPTION 3X: Non-Standalone NR, LTE assisted, EPC connected



Multi-RAT Dual Connectivity with 5G Core (5GC)

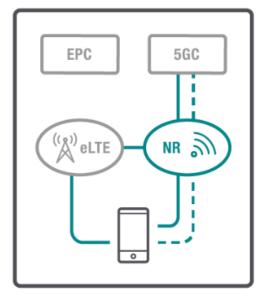

OPTIONS 7/7A/7X

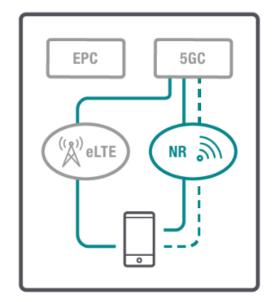
- Dual Connectivity with NG-RAN: NG-RAN E-UTRA-NR Dual Connectivity (NGEN-DC)
 - Master Node: ng-eNB (eLTE) eNB evolved (eLTE)
 - Secondary Node: gNB (5G NR)


OPTION 7: Non-Standalone NR, LTE assisted, 5GC connected

OPTION 7A: Non-Standalone NR, LTE assisted, 5GC connected

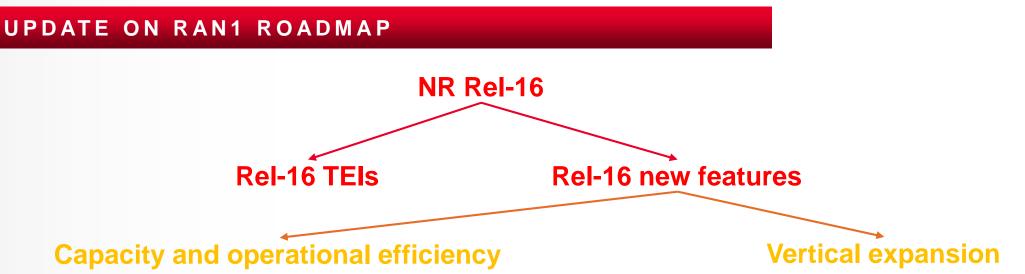
OPTION 7X: Non-Standalone NR, LTE assisted, 5GC connected


Multi-RAT Dual Connectivity with 5G Core


OPTIONS 4/4A

- Dual Connectivity with NG-RAN: NR-E-UTRA Dual Connectivity (NE-DC)
 - Master Node: gNB (5G NR)
 - Secondary Node: ng-eNB (eLTE)

OPTION 4: Non-Standalone eLTE, NR assisted, 5GC connected


Understanding 5G NR Standards

16

AGENDA

- Technology Overview & Timeline
- Carrier Aggregation & Bandwidth Adaptation
- Numerology & Frame Structure
- Waveforms & Modulations
- Protocol Structures, Layers, Signals & Channels
- Beams, Beamforming & Beam Management
- Initial Access Procedure, Example Call Flows
- Network Architecture, Deployment Options
- New Features Coming in Rel-16

Rel-16 Content Summary

- MIMO enhancements
- MR-DC (i.e. Multi-RAT Dual Connectivity)
- IAB (i.e. Integrated Access and Backhaul)
- Mobility enhancements
- CLI/RIM (i.e. Cross Link Interference/Remote Interference Management)
- UE power savings

- IIoT (i.e. Industrial IoT)
- URLLC (i.e. Ultra Reliable Low Latency)
- 2-step RACH
- NR positioning
- NR unlicensed
- V2X (i.e. Vehicle to Everything)

Rel-17 Work Areas

UPDATE ON RAN1 ROADMAP

NR-Light and Small Data Transfer Optimization

- NR optimization for MTC type of devices
- Mostly related to power saving aspects and inactive data transmission
- Sidelink enhancements for NR
 - Focus on areas relating to V2X services, commercial and critical communications
 - Frequency Range 2

NR for above 52.6GHz

- Will include discussions and decisions on waveforms for frequencies higher than currently standardized
- Inclusion of 60GHz unlicensed spectrum

Coverage enhancements

 Work on clarifications for all scenarios which are focusing on extreme coverage including both indoor and wide area

Not all these work areas will be included in the final approved Rel-17 package

Rel-17 Work Areas

UPDATE ON RAN1 ROADMAP

• NB-IoT, eMTC, Industrial IoT, URLLC enhancements

- Enhancements related to current commercial needs and deployments
- Small leftovers from Rel-16 (e.g. header compression)

• NR for Non-Terrestrial Networks and Integrated Access Backhaul (IAB) enhancements

Should include mobile IAB,

RAN data collection enhancements

• Focuses on data collection related to enabling of Artificial Intelligence

Power Saving Enhancements

Focus on power saving related to smartphones and network-related power saving aspects

Positioning Enhancements

- Include further adjustments for more accurate positioning services (e.g. 3D-positioning and cm-level accuracy, latency and reliability improvements)
- Specific areas: IoT, V2X, factory positioning

Not all these work areas will be included in the final approved Rel-17 package

Key Takeaways

UNDERSTANDING THE ROAD AHEAD

- Standards will continue to evolve through Rel-16 and beyond: your test solutions need to be flexible and scalable
- Higher frequencies, wider channel bandwidths, and dual connectivity increase the number of test cases and test complexity
- mmWave and MIMO introduce new OTA test requirements for 5G NR devices and base stations
- New initial access and control procedures will require more testing

Acronym Decoder

- 3GPP Third Generation Partnership Project
- 5G NR 5th Generation New Radio
- BI Beam Index
- BLER Block Error Rate
- BW Bandwidth
- CPE Customer Premise Equipment
- CSI-RS Channel State Information Reference Signal
- DL Downlink
- eNB eNodeB
- FCC Federal Communications Commission
- gNB gNodeB
- KPI Key Performance Indicator
- MAC Media Access Control
- MCS Modulation and coding scheme
- MIMO Multiple Input Multiple Output
- mmWave Millimeter-wave
- NEM Network Equipment Manufacturer

- OFDM Orthogonal Frequency Division Multiplexing
- PBCH Primary Broadcast Channel
- PBCH DMRS PBCH Demodulation Reference Signal
- PDSCH Physical Downlink Shared Channel
- PRACH Physical Random Access Channel
- PRB Physical Resource Block
- PSS Primary Synchronization Signal
- QoE Quality of Experience
- QoS Quality of Service
- RACH Random Access Channel
- RAN Radio Access Network
- RAT Radio Access Technology
- RRC Radio Resource Control
- SCS Sub-carrier spacing
- SRS (UL) Sounding Reference Signal
- SSB Synchronization Signal Block
- SS-RSRP SS Reference Signal Received Power

- SS-RSRQ SS Reference Signal Received Quality
- SS-SINR SS Signal-to-Noise and Interference Ratio
- SSS Secondary Synchronization Signal
- TRS Tracking Reference Signal
- TX Transmitter
- UE User Equipment
- UL Uplink

Keysight 5G Solutions for All Parts of the Ecosystem

5G Network Test

Drive Test and Analytics

5G Signaling Validation Test

5G NR Protocol Validation

Radio Signaling Test

UE Emulation & Load Test

Physical Layer Design and Test Solutions

System-Level Simulation

KEYSIGHT

Parametric Signal Test

Component Characterization

RF and mmWave OTA Test

Digital Conformance Test

Network Simulation & Test

Manufacturing Test Automation

Questions and Resources

- 3GPP Webpage <u>www.3gpp.org</u>
- Keysight Solutions <u>www.keysight.com/find/5G</u>
- Testing 5G NR Device OTA Throughput
 Download Application Note
- Copy of these slides <u>www.keysight.com/find/5GBootCampPresentations</u>

KEYSIGHT TECHNOLOGIES

