

The <u>CubeSat Mission to</u> Study <u>Solar Particles (CuSP)</u>

Walt Downing

IEEE Life Senior Member

Aerospace and Electronic Systems Society President (2020-2021)

Acknowledgements – National Aeronautics and Space Administration (NASA) and CuSP Principal Investigator, Dr. Mihir Desai, Southwest Research Institute (SwRI)

Feature Articles in SYSTEMS Magazine

- Three-part special series on Artemis I CubeSats
 - April 2019 (CuSP, IceCube, ArgoMoon, EQUULEUS/OMOTENASHI, & DSN)
 - September 2019 (CisLunar Explorers, OMOTENASHI & Iris Transponder)
 - March 2020 (BioSentinnel, Near-Earth Asteroid Scout, EQUULEUS, Lunar Flashlight, Lunar Polar Hydrogen Mapper, & Δ-Differential One-Way Range)
- Available in the AESS Resource Center <u>https://resourcecenter.aess.ieee.org/</u>
- Free for AESS members

Feature Article: DOI. No. 10.1109/M. The CubeSat Mission to Study Solar Particles

Mihir I. Desai, Frederic Allegrini, Robert W. Ebert, Keiichi Ogasawara, Michael E. Epperly, Don E. George, Southwest Research Institute, San Antonio, TX, USA Eric R. Christian, Shrikanth G. Kanekal, Brent Randol, NASA Goddard Space Flight Center, Greenbelt, MD, USA Neil Murphy, Jet Propulsion Lab, Pasadena, CA, USA

April 2019 ISSN 0885-8989 Volume 34, Number 4

Coddan

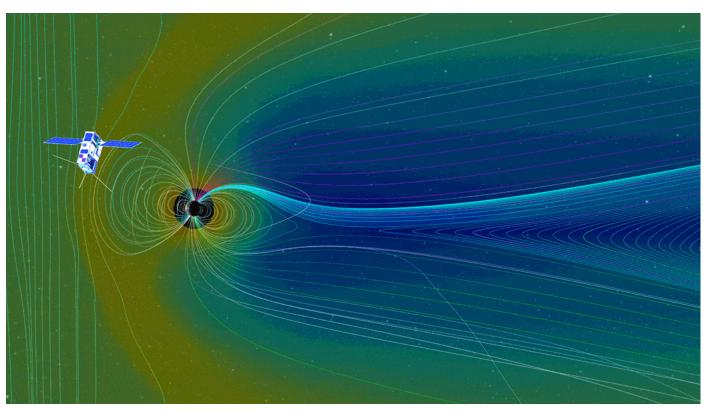
What are CubeSats?

1U Standard Dimensions: 10 cm × 10 cm × 11 cm

Dimensions: 10 cm × 10 cm × 34 cm

- A class of small research spacecraft
- Built to standard dimensions (Units or "U")
 - 1U = 10 cm x 10 cm x 11 cm (Roughly "cube-shaped")
 - Modular: 1U, 2U, 3U, 6U or 12U in size
 - Weigh less than 1.33 kg per U
- NASA's CubeSats are dispensed from a deployer such as a Poly-Picosatellite Orbital Deployer (P-POD)
- NASA's <u>CubeSat Launch initiative (CSLI)</u> provides opportunities for small satellite payloads to fly on rockets planned for upcoming launches. These CubeSats are flown as secondary payloads on previously planned missions.

https://www.nasa.gov/directorates/heo/home/CubeSats_initiative



What is CuSP?

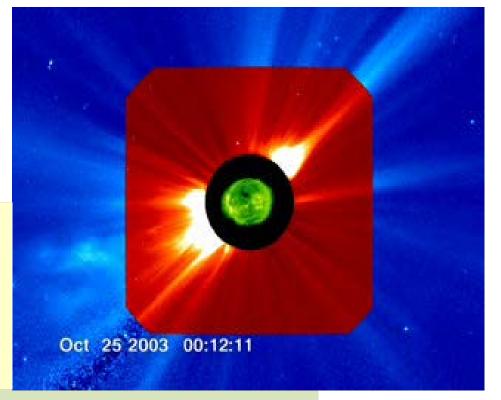
- NASA Science Mission Directorate sponsored Heliospheric Science Mission selected in June 2015 to be launched on Artemis I. <u>https://www.nasa.gov/feature/goddard/2016/heliophys</u> ics-cubesat-to-launch-on-nasa-s-sls
- Support space weather research by determining proton radiation levels during solar energetic particle events and identifying suprathermal properties that could help predict geomagnetic storms.
 - Motion with velocities much larger than the characteristic local thermal velocity is called **suprathermal**.
 - Processes involving magnetic fields, such as solar flares, can produce **suprathermal** particle motions.
- Increase Technical Readiness Level of Interplanetary Space Weather Instruments.
- CuSP is a pathfinder for future interplanetary and space weather CubeSats.

Studying energetic particles energy, composition, and angular distributions yields information about their remote sources, sites of acceleration, and how they are transported to 1 AU.

Severe Space Weather

Solar Particle Events and Geomagnetic Storms Caused by Solar Flares or Coronal Mass Ejections

Solar X-Rays:

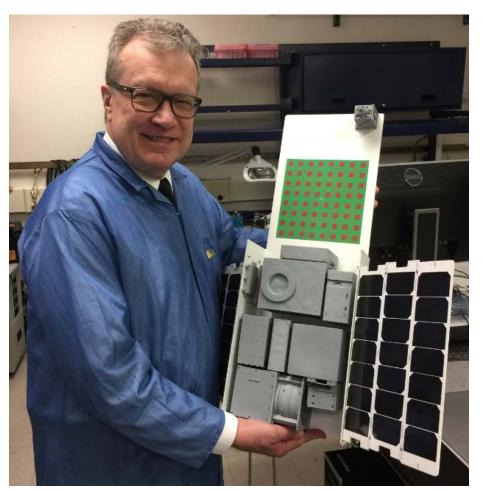

- Arrive in 8 Minutes
- Last minutes to hours
- Increase ionosphere density
- Systems Affected:
 - Radio Communications, Navigation

Solar Energetic Particles:

- Arrive in 30 Minutes to 24 hours
- Last several days
- Systems Affected:
 - Airline Routes, Astronauts, Spacecraft Electronics, Radio Communications

Coronal Mass Ejections (CMEs):

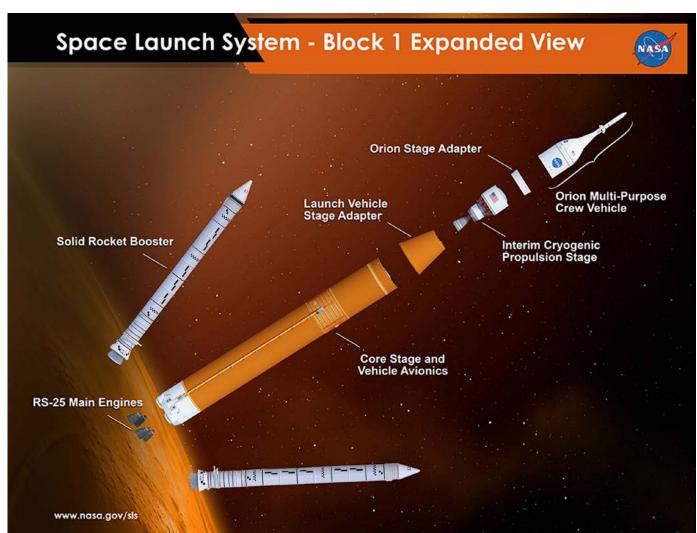
- Arrive 1- 4 Days later
- Last a day or two
- Produce Geomagnetic Storms Systems Affected
 - Radio Communications, Navigation, Electric Power Grids, Pipelines



CuSP Configuration

6U CubeSat

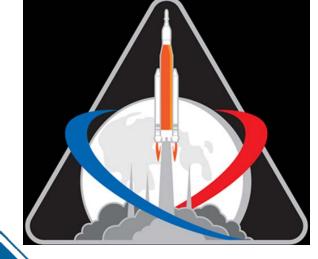
- 3-axis stabilized platform
- Avionics with Command and Data Handling (C&DH), Attitude Determination and Control System (ADCS) and Thruster
- Deployable solar arrays and batteries
- Deep Space X-Band transponder and antennas
- Ground Station
- 3 Scientific Instruments
 - <u>Suprathermal</u> Ion <u>Sensor</u> (SIS) SwRI
 - <u>Miniaturized Electron and Ion Telescope (MErIT) GSFC</u>
 - <u>Vector Helium Magnetometer (VHM)</u> JPL



C. Pr Goddana

NASA's super heavy-lift expendable launch vehicle for deep space exploration

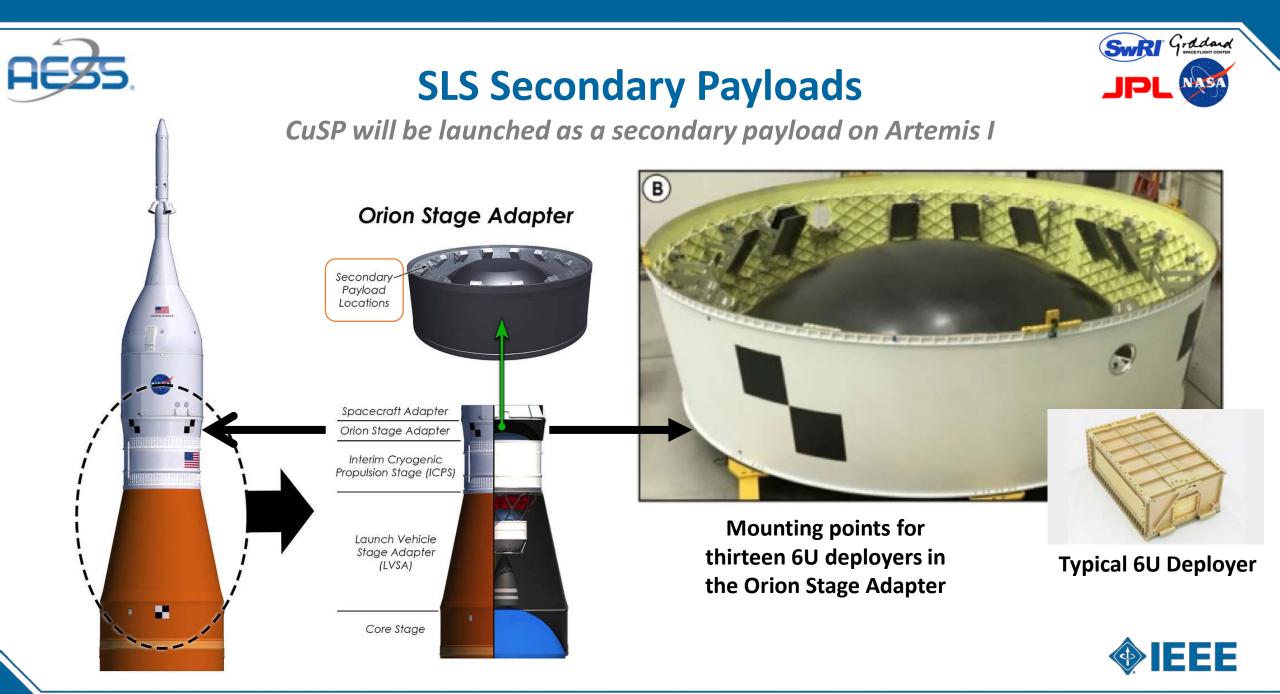
Artemis I Formerly Exploration Mission-1 (EM-1)


- Primary Mission Uncrewed test flight of Orion Multi-Purpose Crew Vehicle (MPCV)
- KSC Launch Complex 39B
- Three-week mission
- Trans-lunar injection
- Six days in distant retrograde orbit around the Moon
- Return to Earth
- Recovery in the Pacific Ocean

Orion MPCV

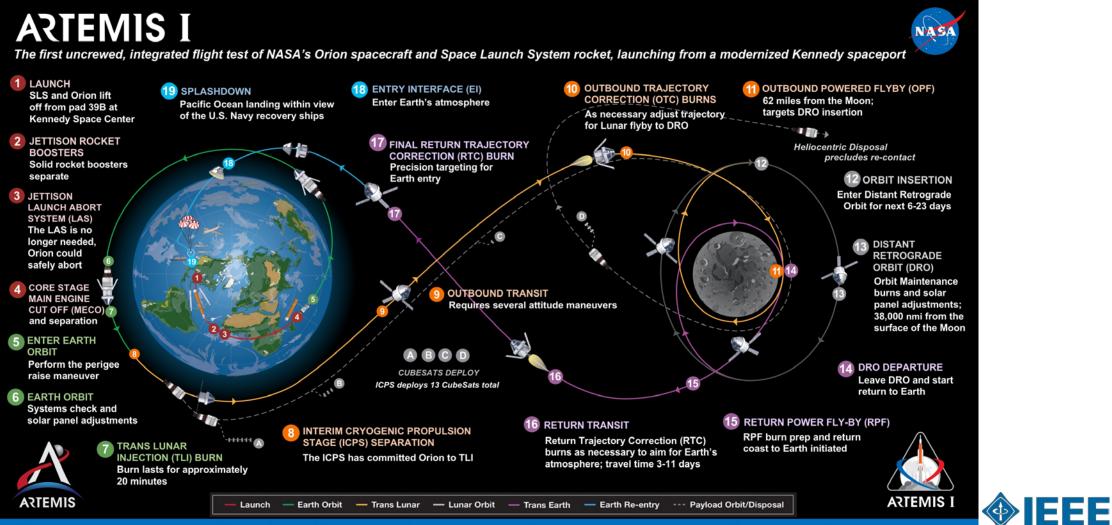
Sur Goddan

Artemis I Secondary Payloads


Thirteen 6U CubeSats

- Selected by NASA Directorates
 - CuSP*
 - BioSentinel~
 - Lunar Flashlight~
 - Lunar IceCube*
 - Lunar Polar Hydrogen Mapper~
 - Near-Earth Asteroid Scout~
 - SkyFire

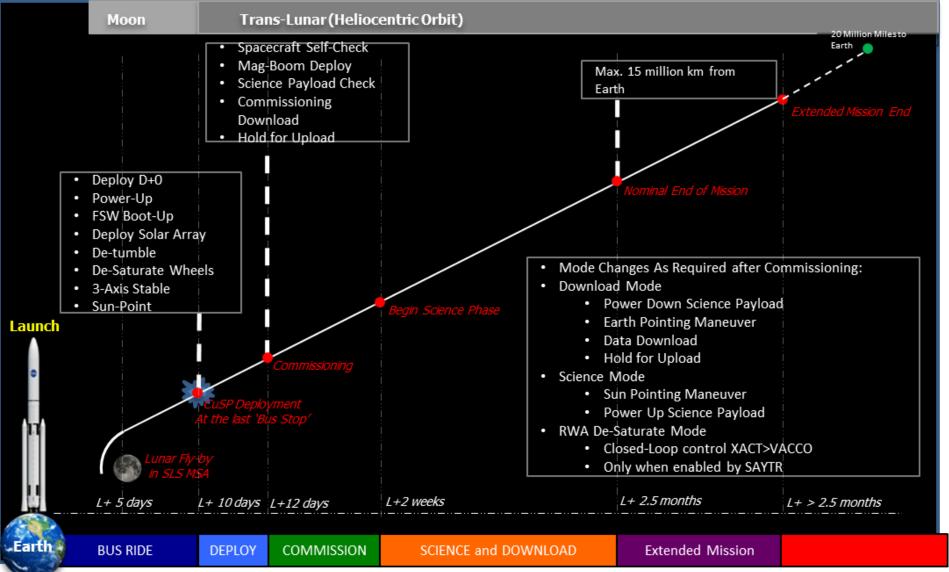
- NASA's Cube Quest Challenge Winners
 - CisLunar Explorers[^]
 - Earth Escape Explorer
 - Team Miles
- NASA's International Partners
 - ArgoMoon (Italian Space Agency)*
 - OMOTENASHI (JAXA)*^
 - EQUULEUS (JAXA)*~



Artemis I Mission Map

RI Goddand

CuSP will deploy at the last "bus stop" after ICPS Lunar flyby ("D" on map)

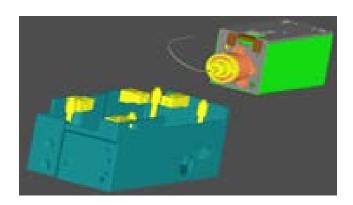

Total distance traveled: 1.3 million miles – Mission duration: 26-42 days – Re-entry speed: 24,500 mph (Mach 32) – 13 CubeSats deployed

CuSP Mission Overview

IEEE



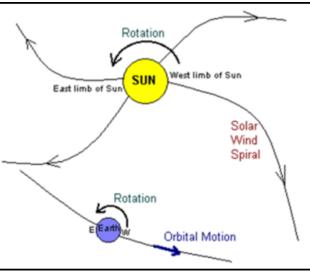
Three Complex Instruments in One CubeSat


<u>Suprathermal Ion Sensor (SIS)</u> – SwRI <u>Miniaturized Electron and Ion Telescope (MErIT)</u> – GSFC <u>Vector Helium Magnetometer (VHM)</u> - JPL

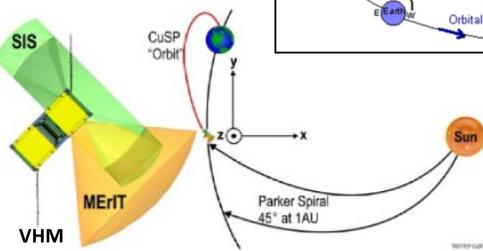
SIS measures spectral and angular distributions of suprathermal ions

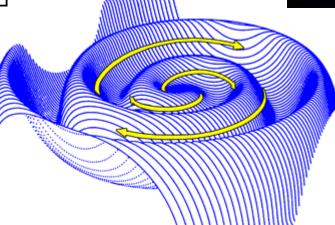
MErIT measures energy spectrum and intensity of electrons, protons, and H-Fe ions

VHM measures magnetic fields



CuSP Orbit and Orientation


Translunar Heliocentric Orbit (leading or lagging Earth, depending on launch date)


CuSP is 3-axis stabilized to ensure instrument fields-of-view along the nominal Parker Spiral direction and ecliptic north

Heliospheric current sheet (Parker's Spiral) is the surface where the polarity of the Sun's magnetic field changes from north to south

Heliospheric current sheet rotates with the Sun on a period of ~25 days

CuSP Sensor Performance

More "bang for the buck"

- Target high-value science
- Leverages heritage designs to achieve high technical-readiness levels with minimal non-recurring engineering
- Parts program tailored for 3-month onorbit science operations to reduce hardware costs
- Lower costs and higher risks are typical of CubeSat missions

Functional Parameter	Suprathermal Ion Sensor (SIS)	Miniaturized Electron and Ion Telescope (MErIT)	Vector Helium Magnetometer
Measurement Technique and Parameters	Electrostatic Analyzer & Position-sensing MCP → E/q and Incident Direction	Single-ended 8-SSD stacked telescopes \rightarrow multiple ΔE versus Residual energy	Optical pumping of He atoms→ Vector components of B field
Species & Energy Range	H & He: ~3-69 keV/q	e-s: 100 keV-4 MeV H, He: ~2-40 MeV/n; Fe: ~5-170 MeV/n	N/A
Energy resolution (FWHM)	Δ(E/q)/E/q~26-34%	$\Delta \text{E/E}{<}30\%$; ${\sim}8$ bins/decade	N/A
Time Resolution (s)	1 full E/q spectrum at 60 s	Energy spectra and intensities at 60 s	<0.3 Hz
Instantaneous FOV (Elevation × Azimuth) [°]	Elevation angle: 12° to 23° Azimuthal angle: 270°	Conical, ±45° pointed along Parker Spiral	N/A
Full FOV (Elevation × Azimuth) [°]	-16° to +24° $\times{\sim}270^\circ$		N/A
Angular resolution (FWHM) [*]	Ring 1 (innermost) to 5 (outermost): 12°, 18°, 20°, 23°, 20° (× 45°)	N/A	N/A
Geometric Factor or Sensitivity	~0.015 [cm ² sr eV/eV] for 270 ⁼ in azimuth	H & He: ~1 [cm ² sr]; Z>2: 10 [cm ² sr]	${<}25\text{pT/}{\sqrt{\text{Hz}}}$ at 1 Hz
Dynamic Range	~0.22-0.55 MHz per pixel (corresponds to 1 MHz/cm ² on the MCP)	~100 kHz per detector segment	0-2000 nT (±1000 nT)

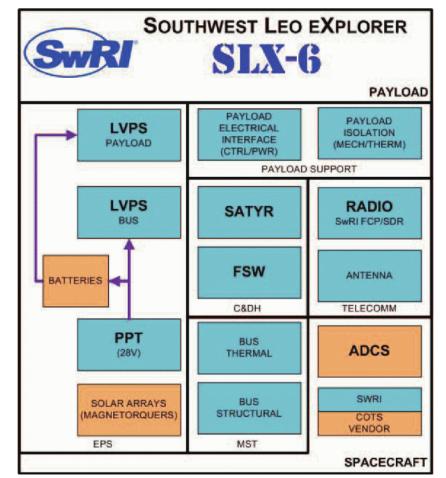
SwRI Goddana

CuSP Resource Characteristics

SWRI Goddand JPL

High Performance at Reduced SWAP

CuSP Sensor Performance and Characteristics					
Functional Parameter	Suprathermal Ion Sensor (SIS)	Miniaturized Electron and Ion Telescope (MErIT)	Vector Helium Magnetometer		
Current Best Estimate Resource Summary					
Mass (g) ^a	1366	1100	815		
Power (W) ^a	4.5	1.04	4.41		
Volume (cm ³) ^b	$10cm \times 10cm \times 15cm$	10cm imes 10cm imes 9cm	$10cm\times10cm\times5cm$		
Telemetry (bps)	45.3	32.5	288		

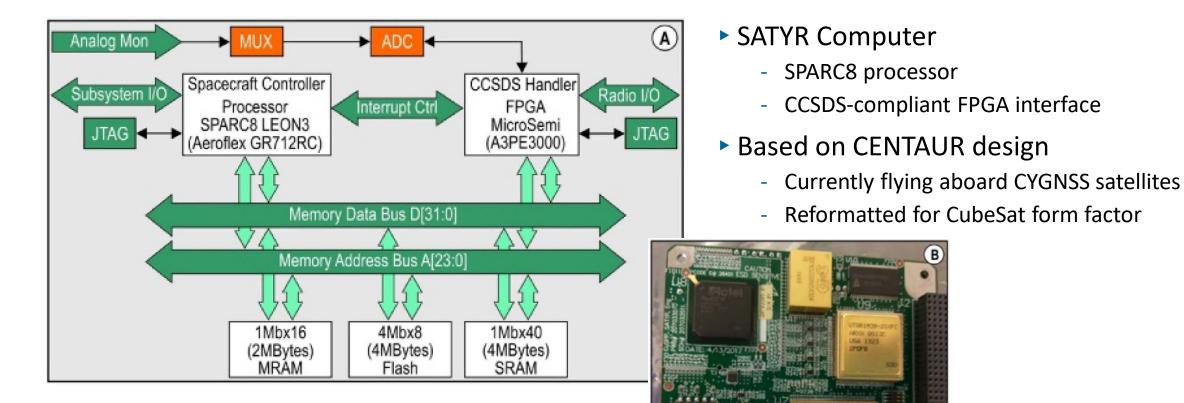


CuSP Spacecraft Bus

Southwest Deep EXplorer (SDX-6)

- Based on Southwest Leo Explorer (SLX-6) with accommodations for deep space operations
- 6U CubeSat (2U x 3U configuration)
- Seven Subsystems
 - Command and Data Handling (C&DH)
 - Electrical Power (EPS)
 - Attitude Determination and Control (ADCS)
 - Telecommunications (TELECOMM)
 - Mechanical, Structural and Thermal (MST)
 - Payload Support
 - Flight Software (FSW)
- See Proceedings of the 2016 IEEE Aerospace Conference, March 2016
 - Authors Don George & John Dickinson, SwRI
 - AESS Flagship Conference on Space Systems

ÉSS.	CuSP Subsystem C	Overview JPL
		VHM ELECTRONICS
Mechanical, Structural, Thermal	 "6U" CubeSat form factor (~10x20x30 cm) <14 kg total launch mass Modular flight system concept 	SIS SATYR CDH EPS/BATTERIES IRIS TRANSPONDER
C&DH	SwRI SATYR (LEON-3) C&DH	
Electrical Power System (EPS)*	 +12V, +/-5V, +3.3V Solar Arrays, 6U-Deployed, + 2U-Fixed 80 Whr, Lithium-Ion Polymer Cells 	
Telecom*	 X-Band Transponder Supports Doppler, ranging, and D-DOR 2 Low Gain Patch Array Antennas 1 Medium Gain Patch Array Antenna ~8 kbps to 34m DSN at all times 	XACT ADCS MERIT
ADCS*	 3-Axis Stable, Sun-Pointing Nano StarTracker, Coarse Sun Sensors & MEMS IMU (inertial momentum Unit) for attitude determination Directly commands Reaction Control 	THRUSTER
Reaction Control*	Cold Gas Thruster Inertia Shedding Only Closed Loop control	HIGH GAIN ANTENNA VHM SENSOR



Command and Data Handling (C&DH)

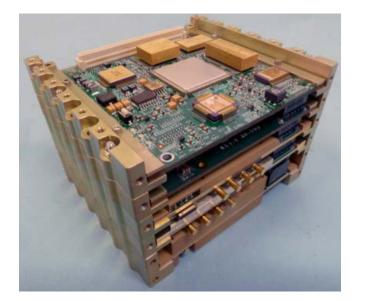
SwRI Space-Qualified Heritage Single-Board Computer

Ancillary Subsystems

Extensive use of Commercial Off-the-Shelf Equipment

- Electrical Power Subsystem (Clyde Space)
 - Eight Solar panels (2 triple-deployed arrays and 2 fixed-body arrays)
 - Two 40-Wh battery packs
 - 28 VDC primary power bus with dc/dc converters producing +3.3, ±5, and +12 VDC regulated outputs
- 3-Axis Attitude Determination and Control Subsystem
 - XACT (Blue Canyon Technologies)
 - Integrated ADCS with 3 reaction wheels, 2 sun sensors and star tracker
 - ±0.007° pointing accuracy
 - 0.5U, 885g
 - Micro-Propulsion System (MiPS) (VACCO Industries)
 - four cold gas thrusters
 - Direct interface between XACT & MiPS for inertia shedding without C&DH intervention

• 0.3U, 690g


Telecommunications

Same baseline for most Artemis I CubeSats

- Iris v2.1 Deep Space X-Band Transponder (JPL)
 - Communicates with NASA Deep Space Network (34-m antenna)
 - Three low-gain patch antennas and One medium-gain 64-patch array
 - 7.2-GHz uplink and 8.4 GHz downlink
 - 0.5U, 1.2 kg, 35W power consumption

CuSP Telecommunications Plan

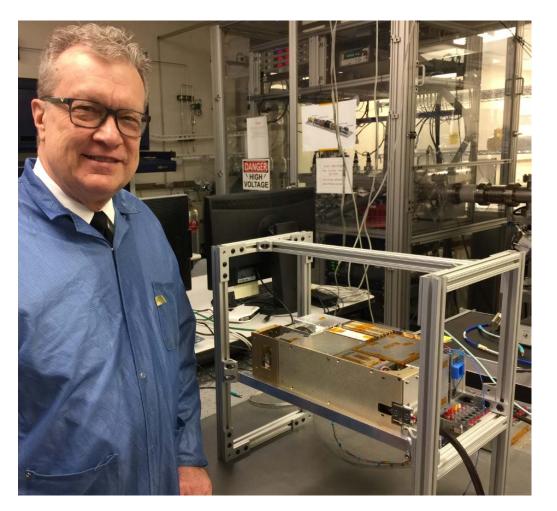
- Transmission rate 1K bps uplink and 8K bps downlink
- Science operations require weekly, 4-hour DSN contacts for a 14-week mission duration
- Each weekly DSN contact will downlink ~73 Mb of telemetry (C&DH has 8 Gb flash memory)
- 6 dB link margin at max range ~15M km (distance from the Earth to the Moon is ~384K km)
- See related articles in SYSTEMS magazine special issues on Artemis I CubeSats
 - Deep Space Network in the CubeSat Era (April 2019)
 - The Iris Deep-Space Transponder for the SLS EM-1 Secondary Payloads (September 2019)
 - Regenerative Ranging for JPL Software-Defined Radios (September 2019)
 - Improved Signals for Differential One-Way Range (March 2020)

Goddan

Engineering Challenges

- CubeSat Programs in General
 - Low Budget
 - Form Factor Limitations
 - SWAP Constraints
 - COTS are "NOT"
 - Battery quality issues
 - Power supply failures
 - Supplier schedule delays
 - Issues required extensive monitoring
 - Interface Control Documents are more like "Interface Suggestion Documents"

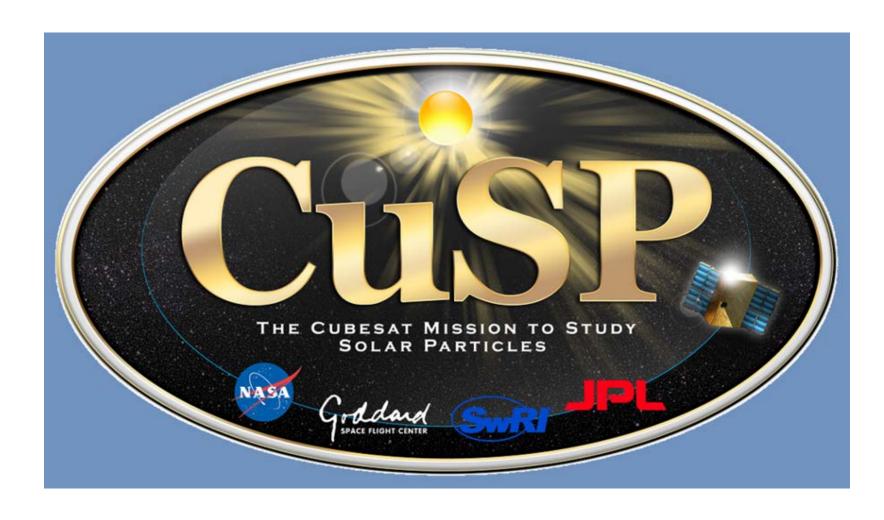
- CuSP on Artemis I
 - Rigorous Hazard Analyses and Payload Safety Review Process
 - Ensure that CuSP does no harm to SLS or Orion
 - Extensive NASA reviews
 - Requirements similar to manned space flight programs
 - Technical challenges associated with miniaturization of heritage designs (e.g. noise, isolation, thermal management, etc.)
 - Launch delays and uncertainties
 - Original launch planned for December 2017
 - Delays impact staffing continuity and budget



Current Status

- Ongoing system integration
- Delivery to site for installation (October 2020)
- Artemis I Launch (July 2021) may slip more

CuSP in Handling Fixture



Thank You!

Questions?

