NOMENCLATURE, TAGGING and MARKINGS

$\mathrm{V} \equiv|\underline{\mathrm{V}}|$ - number, module of vector
V - complex voltage vector
\mathbf{V} - matrix of vectors or numbers

Problem No. 1

Power Company (CP), i.e. Utility, provided data listed below for the connection point to the grid (i.e. Point of Common Coupling -> PCC). Base on these data, provide following calculations and/or information that will be used for new substation estimating, engineering and design.

System Configuration/ Scenario	Three Phase (I_{A})	Single Phase (31 ${ }^{n}$)	Thevenin's Equivalent Voltage Source
Both 138 kV Lines In-Service	$\begin{aligned} & 4953 \\ & \text { MVA } \end{aligned}$	$\begin{aligned} & 3143 \\ & \text { MVA } \end{aligned}$	$\begin{gathered} 1.0367 \\ \text { p.u. } \end{gathered}$
Ckt OHLl Out-of-Service	2915 MVA	1746 MVA	$\begin{gathered} 1.0348 \\ \text { p.u. } \end{gathered}$
Ckt OHL2 Out-of-Service	$\begin{aligned} & 2333 \\ & \text { MVA } \end{aligned}$	$\begin{aligned} & 1520 \\ & \text { MVA } \end{aligned}$	$\begin{gathered} 1.0362 \\ \text { p.u. } \end{gathered}$

S $_{3 P H _A V _L 1 L 2 ~}:=4953 M V A$
S $_{3 P H _A V _L 1}:=2915 M V A$
S LG_AV_L1L2 $:=3143 M V A$
$S_{L G _A V _L 1}:=1746 M V A$
$\underline{U}_{\underline{\text { TH_L1L2_pu }}}:=1.0367 \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}} \mathrm{pu} \quad \underline{\mathrm{U}}_{\underline{\text { TH_L1_pu }}}:=1.0348 \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}} \mathrm{pu}$

$$
\begin{aligned}
& \mathrm{S}_{3 P H _A V _L 2}:=2333 \mathrm{MVA} \\
& \mathrm{~S}_{\mathrm{LG} _A V _L 2}:=1520 \mathrm{MVA} \\
& \underline{\mathrm{U}}_{\underline{\mathrm{TH}} \mathrm{~L} 2 _p u}:=1.0362 \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}_{\mathrm{pu}}}
\end{aligned}
$$

$$
\mathrm{U}_{\mathrm{n}}:=\left|138 \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}\right| \mathrm{kV}=138 \cdot \mathrm{kV}
$$

Assumption about $\frac{X}{R}$ for each configurations are made based on references, Color Books and attached. As a result, XR $\equiv 9$
A. For each Utility configuration, calculate: three phase and single phase available short circuit currents in following forms:

$$
\underline{\mathrm{I}}_{\underline{\text { Fault_3PH_L1L2 }}}:=\frac{\mathrm{S}_{3 P H _A V_{-L 1 L 2 ~}}}{\sqrt{3} \cdot \underline{\mathrm{U}}_{\underline{\mathrm{TH}} \mathrm{~L} 1 \mathrm{~L} 2 _p u} \cdot \mathrm{U}_{\mathrm{n}}} \cdot(\cos (\operatorname{atan}(\mathrm{XR}))-\mathrm{i} \cdot \sin (\operatorname{atan}(\mathrm{XR})))=(2.21-19.87 \mathrm{j}) \cdot \mathrm{kA}
$$

HW02_solution.xmcd, Saved: 03/03/2009
$\left|\underline{I}_{\text {Fault_3PH_L1L2 }}\right|=19.99 \cdot \mathrm{kA}$

$\left|\underline{I_{\text {Fault_3I0_L1L2 }}}\right|=12.68 \cdot \mathrm{kA}$
$\underline{I}_{\text {Fault_3PH_L1 }}:=\frac{\mathrm{S}_{3 \text { 3PH_AV_L1 }}}{\sqrt{3} \cdot \underline{U}_{\underline{\text { TH L1 }} 1 _ \text {pu }} \cdot \mathrm{U}_{\mathrm{n}}} \cdot(\cos (\operatorname{atan}(\mathrm{XR}))-\mathrm{i} \cdot \sin (\operatorname{atan}(\mathrm{XR})))=(1.3-11.71 \mathrm{j}) \cdot \mathrm{kA}$
$\mid \underline{\text { Fault_3PH_L1 } \mid=11.79 \cdot \mathrm{kA}, ~}$
$\underline{I}_{\text {Fault_3I0 L1 }}:=\frac{\mathrm{S}_{\text {LG_AV_L1 }}}{\sqrt{3} \cdot \underline{\mathrm{U}}_{\underline{\text { TH_L1_pu }}} \cdot \mathrm{U}_{\mathrm{n}}} \cdot(\cos (\operatorname{atan}(\mathrm{XR}))-\mathrm{i} \cdot \sin (\operatorname{atan}(\mathrm{XR})))=(0.78-7.02 \mathrm{j}) \cdot \mathrm{kA}$
$\left|\underline{\mathrm{I}_{\text {Fault_3I0_L1 }}}\right|=7.06 \cdot \mathrm{kA}$
$\underline{I}_{\text {Fault_3PH_L2 }}:=\frac{\mathrm{S}_{3 \text { PH_AV_L2 }}}{\sqrt{3} \cdot \underline{U}_{\text {TH_L2_pu }} \cdot \mathrm{U}_{\mathrm{n}}} \cdot(\cos (\operatorname{atan}(\mathrm{XR}))-\mathrm{i} \cdot \sin (\operatorname{atan}(X R)))=(1.04-9.36 \mathrm{j}) \cdot \mathrm{kA}$
$\mid \underline{\text { FFault_3PH_L2 } \mid=9.42 \cdot \mathrm{kA}, ~}$
$\underline{I}_{\underline{\text { Fault_3I0_L2 }}}:=\frac{\text { S }_{\text {LG_AV_L2 }}}{\sqrt{3} \cdot \underline{U}_{\underline{\text { TH L2 } 2 _p u ~}} \cdot \mathrm{U}_{\mathrm{n}}} \cdot(\cos (\operatorname{atan}(\mathrm{XR}))-\mathrm{i} \cdot \sin (\operatorname{atan}(\mathrm{XR})))=(0.68-6.1 \mathrm{j}) \cdot \mathrm{kA}$
$\left|\underline{\mathrm{I}_{\text {Fault_3I0_L2 }}}\right|=6.14 \cdot \mathrm{kA}$
B. For per-unit calculations, assume that 100 MVA base on 138 kV is used. Calculate and/or provide following data: system be voltage, base current and base impedance.
$S_{M_{b}}:=100 \mathrm{MVA}$
$\mathrm{U}_{\mathrm{b} _100 \mathrm{MVA}}:=138 \mathrm{kV}$
$\mathrm{I}_{\mathrm{b} _100 \mathrm{MVA}}:=\frac{\mathrm{S}_{\mathrm{b}}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{b} _100 \mathrm{MVA}}}=418.37 \mathrm{~A}$
$\mathrm{Z}_{\mathrm{b} _100 \mathrm{MVA}}:=\frac{\mathrm{U}_{\mathrm{b} _100 \mathrm{MVA}^{2}}}{\mathrm{~S}_{\mathrm{b}}}=190.44 \Omega \quad$ or $\quad \quad \mathrm{Z}_{\mathrm{b}}:=\frac{\mathrm{U}_{\mathrm{b} _100 \mathrm{MVA}}}{\sqrt{3} \cdot \mathrm{I}_{\mathrm{b} _1} 100 \mathrm{MVA}}=190.44 \Omega$
C. For each Utility configuration, on the per-unit on a 100MVA base @ 138kV, calculate Positive, Negative and Zero sequence impedances at Thévenin's Equivalent system voltage at PCC. Calculated impedances to be presented in following forms:

From nonsymmetrical fault theory:

HW02_solution.xmcd , Saved: 03/03/2009
$\mathrm{I}_{\mathrm{F}_{-} \mathrm{LG}}=\frac{3 \mathrm{U}_{\mathrm{F}}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{0}} \quad$ or $\quad \mathrm{Z}_{0}=\frac{3 \cdot \mathrm{U}_{\mathrm{F}}}{\mathrm{I}_{\mathrm{F}_{-} \mathrm{LG}}}-\mathrm{Z}_{2}-\mathrm{Z}_{1}$

For L1 and L2 lines in service:
From 3PH fault, we obtain

Assumption:

For L1 line in service only:

From 3PH fault, we obtain

$$
\underline{Z}_{1 _ \text {_L1 }}:=\frac{\underline{\mathrm{U}}_{\underline{\mathrm{TH}}}}{\left(\frac{\underline{\mathrm{I}}_{\text {Fault_3PH_pu }}}{\mathrm{I}_{\mathrm{b} _100 \mathrm{MVA}}}\right)}=(0.004057+0.03651 \mathrm{i}) \cdot \mathrm{pu}
$$

$$
\mathrm{z} 2 \mathrm{r} \theta\left(\underline{\mathrm{Z}}_{\underline{1 _}} \mathrm{L} 1\right)="\left(0.0367 \measuredangle 83.66^{\circ}\right) \mathrm{n} \cdot \mathrm{pu}
$$

Assumption:

For L2 line in service only:
From 3PH fault, we obtain
$\underline{Z}_{\underline{Z_{1 _L 2}}}:=\frac{\underline{U}_{\text {TH_L2_pu }}}{\left(\frac{\underline{\mathrm{I}}_{\text {Fault_3PH_L2 }}}{\mathrm{I}_{\mathrm{b} _100 \mathrm{MVA}}}\right)}=(0.005082+0.045741 \mathrm{i}) \cdot \mathrm{pu}$ $\mathrm{z} 2 \mathrm{r} \theta\left(\underline{\mathrm{Z}}_{\underline{1} \text { L2 } 2}\right)="\left(0.046 \measuredangle 83.66^{\circ}\right) " \cdot \mathrm{pu}$

Assumption:
HW02_solution.xmcd, Saved: 03/03/2009

$$
\begin{aligned}
& \underline{\mathrm{Z}}_{\underline{2} _\mathrm{L} 1}:=\underline{\mathrm{Z}}_{1 _\mathrm{L} 1}=(0+0.04 \mathrm{j}) \cdot \mathrm{pu}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{z} 2 \mathrm{r} \theta\left(\underline{\mathrm{Z}}_{2} \underline{L} \mathrm{~L} 1\right)="\left(0.0367 \measuredangle 83.66^{\circ}\right) \mathrm{C} \cdot \mathrm{pu} \\
& \underline{Z}_{\underline{0 _L 1}}=(0.01+0.11 \mathrm{j}) \cdot \mathrm{pu} \\
& \mathrm{z} 2 \mathrm{r} \theta\left(\underline{\mathrm{Z}}_{\underline{0 _L} 1}\right)="\left(0.1105 \measuredangle 83.66^{\circ}\right) \mathrm{C} \cdot \mathrm{pu}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\mathrm{Z}}_{2} \underline{L 1 L 2}:=\underline{\mathrm{Z}}_{1 _ \text {L1L2 }}=(0+0.02 \mathrm{j}) \cdot \mathrm{pu} \quad \mathrm{z} 2 \mathrm{r} \theta\left(\underline{\mathrm{Z}}_{\underline{2} \text { L1L2 }}\right)="\left(0.0217 \measuredangle 83.66^{\circ}\right) \text { " } \cdot \mathrm{pu}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{Z}_{0 _ \text {L1L2 }}=(0.01+0.06 \mathrm{j}) \cdot \mathrm{pu} \\
& \mathrm{z} 2 \mathrm{r} \theta\left(\underline{\mathrm{Z}}_{\underline{0} _\mathrm{L} 1 \mathrm{~L} 2}\right)="\left(0.0592 \measuredangle 83.66^{\circ}\right) \mathrm{n} \cdot \mathrm{pu}
\end{aligned}
$$

D. For each Utility configuration, calculate $\frac{X}{R}$ for each impedance calculated in C.

The $\frac{X}{R}$ ratio for all circuit was assigned and is identical for all impedances $\frac{X}{R}=9$.

Problem No. 2

For transformer with data provided in attached TRANSFORMER_DATA.PDF, calculate following:
A. High Side (HS) and Low Side (LS) currents assuming transformer is loaded 100% and Power Factor (PF) is 1.00 .

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n} \text { _OA_55C }}:=45 \mathrm{MVA} \quad \mathrm{~S}_{\mathrm{n} _ \text {FA_5C }}:=60 \mathrm{MVA} \quad \mathrm{~S}_{\mathrm{n} \text { _2FA_5 }}:=75 \mathrm{MVA} \\
& \mathrm{~S}_{\mathrm{n} \text { _OA_65C }}:=50.4 \mathrm{MVA} \quad \mathrm{~S}_{\mathrm{n} _ \text {FA_65C }}:=67.2 \mathrm{MVA} \quad \mathrm{~S}_{\mathrm{n} \text { _2FA_65C }}:=84 \mathrm{MVA} \\
& \text { Connection }=\mathrm{Yy0} \quad \underline{\mathrm{U}}_{\underline{n} _\mathrm{HS}}:=\left|138 \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}\right| \mathrm{kV} \\
& \underline{U}_{\underline{\boldsymbol{n}_{L S}}}:=\left|34.5 \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}\right| \mathrm{kV} \quad \underline{\mathrm{Z}}_{\underline{\mathrm{t}}} \underline{H X}:=(1+\mathrm{j} \cdot 9.95) \% \\
& \cos (\alpha):=1{ }^{\text {I }} \\
& \alpha:=\operatorname{acos}(1)=0 \cdot \operatorname{deg}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{I}_{\underline{n} \text { HS_FA_55C }}:=\frac{\mathrm{S}_{\mathrm{n}_{_} \text {FA_55C }} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{Odeg}}}{\sqrt{3} \cdot \underline{U}_{\underline{n} _H S}}=251.0 \mathrm{~A} \\
& \underline{I}_{\underline{n} _H S _2 F A _55 C}:=\frac{S_{n _2 F A _55 C} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}}{\sqrt{3} \cdot \underline{U}_{\underline{\underline{n}}} \underline{H S}}=313.8 \mathrm{~A} \\
& \underline{I}_{\underline{n} _H S _O A _65 C}:=\frac{S_{n_{_} O A _65 C} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{Odeg}}}{\sqrt{3} \cdot \underline{\mathrm{U}}_{\underline{\mathrm{n}} \text { HS }}}=210.9 \mathrm{~A} \\
& \underline{I}_{\underline{n} _H S _F A _65 C}:=\frac{S_{n_{_} \text {FA_65C }} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{Odeg}}}{\sqrt{3} \cdot \underline{\mathrm{U}}_{\underline{n} _H S}}=281.1 \mathrm{~A} \\
& \underline{I}_{\underline{n} \text { _HS_2FA_65C }}:=\frac{S_{n_{n} _2 F A _65 C} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}}{\sqrt{3} \cdot \underline{U}_{\underline{n} _H S}}=351.4 \mathrm{~A} \\
& \underline{\underline{I}}_{\underline{n} \text { LS_OA_55C }}:=\frac{\mathrm{S}_{\mathrm{n} _\mathrm{OA}} \text { _55C } \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}}{\sqrt{3} \cdot \underline{\mathrm{U}}_{\underline{n}} \text { LS }}=753.1 \mathrm{~A} \\
& z 2 r \theta\left(\underline{I}_{\text {n_HS_2FA_65C}}\right)="\left(351.4306 \measuredangle 0^{\circ}\right) " \cdot \mathrm{~A}
\end{aligned}
$$

HW02_solution.xmcd , Saved: 03/03/2009

$$
\underline{I}_{\underline{n} \text { LS_FA_55C }}:=\frac{\mathrm{S}_{\mathrm{n} _F A _55 \mathrm{C}} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}}{\sqrt{3} \cdot \underline{U}_{\underline{n} _L S}}=1004.1 \mathrm{~A}
$$

$$
z 2 r \theta\left(\underline{I}_{\text {n_LS_FA_55C }}\right)="\left(1004.0874 \measuredangle 0^{\circ}\right) " \cdot \mathrm{~A}
$$

$\underline{I}_{-\mathrm{n} \text { _LS_2FA_55C }}:=\frac{\mathrm{S}_{\mathrm{n} _2 F A _55 \mathrm{C}} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}}{\sqrt{3} \cdot \underline{\mathrm{U}}_{\underline{\mathrm{n}}} \underline{L S}}=1255.1 \mathrm{~A}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\underline{\mathrm{I}_{n}}\right.$ LS_2FA_55C$)="\left(1255.1093 \measuredangle 0^{\circ}\right) " \cdot \mathrm{~A}$
$\underline{I}_{\underline{n} \text { LS_OA_65C }}:=\frac{\mathrm{S}_{\mathrm{n} _\mathrm{OA} _65 \mathrm{C}} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}}{\sqrt{3} \cdot \underline{U}_{\mathrm{n}} \underline{L S}}=843.4 \mathrm{~A}$
$\underline{I}_{\underline{n} \text { LS_FA_65C }}:=\frac{\mathrm{S}_{\mathrm{n} _F A _65 \mathrm{C}} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}}{\sqrt{3} \cdot \underline{U}_{\underline{n} _L S}}=1124.6 \mathrm{~A}$
$\underline{I}_{\underline{n} \text { LS_2FA_65C }}:=\frac{S_{\mathrm{n}_{\text {}} 2 F A _65 \mathrm{C}} \cdot \mathrm{e}^{-\mathrm{j} \cdot 0 \mathrm{deg}}}{\sqrt{3} \cdot \underline{\mathrm{U}}_{\underline{\mathrm{n}} \text { LS }}}=1405.7 \mathrm{~A}$
B. HS and LS apparent, real and reactive powers, currents for: $10 \%, 25 \%, 50 \%, 75 \%, 100 \%$ loads and following P.F.'s $1.00,0.95,0.90,0.85,0.50$. Do not consider losses in the transformer (ideal transformer).

Load :=($0 \% 10 \% 25 \% 50 \% 75 \% 100 \%)^{T}$
$\mathrm{PF}_{\mathrm{a}}:=(100 \% 95 \% 90 \% 85 \% 50 \%)^{\mathrm{T}}$
$\underline{S}_{\underline{L} \text { LS }}\left(\mathrm{S}_{\text {max }}\right.$, Load, PF$):=\mathrm{S}_{\text {max }} \cdot \operatorname{Load} \cdot \mathrm{e}^{\mathrm{j} \cdot \operatorname{acos}(\mathrm{PF})}$

\% Loading of OAFAFA @ 65degC Rating
HW02_solution.xmcd , Saved: 03/03/2009

For loss less transformer, the LS and HS load power are equivalent and the LS and HS currents depend on LS and HS volta and transformer connection.
$\underline{I}_{\underline{n} _L S _L o a d}($ Load,$P F):=\frac{S_{n_{-} _2 F A _65 C} \cdot \operatorname{Load} \cdot \mathrm{e}^{\mathrm{j} \cdot \operatorname{acos}(P F)}}{\sqrt{3} \cdot \underline{U}_{\underline{n} _L S}}$
$\underline{\mathrm{I}}_{\mathrm{n} \text { _HS_Load }}($ Load,$P F):=\frac{\mathrm{S}_{\mathrm{n} _2 F A _65 C} \cdot \operatorname{Load} \cdot \mathrm{e}^{\mathrm{j} \cdot \operatorname{acos}(P F)}}{\sqrt{3} \cdot \underline{U}_{\underline{n} _H S}}$
Real Load Current at LS

\% Loading of OAFAFA @ 65degC Rating

HW02_solution.xmcd, Saved: 03/03/2009

Reactive Load Current at LS

\% Loading of OAFAFA @ 65degC Rating Real Current at HS

\% Loading of OAFAFA @ 65degC Rating

Reactive Current at HS

$$
\begin{aligned}
& \text { \% Loading of OAFAFA @ 65degC Rating }
\end{aligned}
$$

HW02_solution.xmcd, Saved: 03/03/2009

HW02_solution.xmcd, Saved: 03/03/2009
C. HS and LS apparent, real and reactive powers, currents and reactive power loss for: $10 \%, 25 \%, 50 \%, 75 \%, 100 \%$ loads and following P.F.'s 1.00, $0.95,0.90,0.85,0.50$. Consider losses in the transformer.

Losses in the transformer are approximated only by impedance of the transformer i.e. excitation loses are disregarded constant and minimal for overall power balance of the transformer during operation.

Load $:=\left(\begin{array}{lllll}0 \% & 10 \% & 25 \% & 50 \% & 75 \% \\ 100 \%\end{array}\right)^{\mathrm{T}}$
$\mathrm{PF}_{\mathrm{a}}:=(100 \% 95 \% \quad 90 \% \quad 85 \% 50 \%)^{\mathrm{T}}$
$\underline{S}_{\underline{\text { LL_LS }}}($ Load, PF $):=\left(S_{n _2 F A _65 C}\right) \cdot\left(\operatorname{Load} \cdot \mathrm{e}^{\mathrm{j} \cdot \operatorname{acos}(P F)}\right)$

HW02_solution.xmcd, Saved: 03/03/2009

For LS side of TR currents for loss less and with losses transformer are identical to currents in task C. Currents for HS al calculated below:.

Real Current at HS

\% Loading of OAFAFA @ 65degC Rating

HW02_solution.xmcd, Saved: 03/03/2009

Reactive Current at HS

HW02_solution.xmcd, Saved: 03/03/2009

Active and Reactive Current Components on HS

For Load $=\left(\begin{array}{c}0 \\ 0.1 \\ 0.25 \\ 0.5 \\ 0.75 \\ 1\end{array}\right)$ and $\mathrm{PF}_{\mathrm{a}}=\left(\begin{array}{c}1 \\ 0.95 \\ 0.9 \\ 0.85 \\ 0.5\end{array}\right)$ loss at the transformer for each PF is:
$\mathrm{S}_{\mathrm{Loss}}(\mathrm{Load}, \mathrm{PF}):=\underline{\mathrm{S}}_{\underline{\mathrm{LL} _\mathrm{HS}}}(\mathrm{Load}, \mathrm{PF})-\underline{\mathrm{S}}_{\underline{\mathrm{L} _}{ }_{\mathrm{LS}}}($ Load, PF$)$

HW02_solution.xmcd, Saved: 03/03/2009
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(10 \%, 100 \%)\right)="\left(1568019.5999 \measuredangle 84.26^{\circ}\right) " \cdot \mathrm{VA}$
$z 2 r \theta\left(S_{\text {Loss }}(25 \%, 100 \%)\right)="\left(3920048.9997 \measuredangle 84.26^{\circ}\right) " \cdot V A$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(50 \%, 100 \%)\right)="\left(7840097.9994 \measuredangle 84.26^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(75 \%, 100 \%)\right)="\left(11760146.9991 \measuredangle 84.26^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(100 \%, 100 \%)\right)="\left(15680195.9988 \measuredangle 84.26^{\circ}\right) " \cdot \mathrm{VA}$
$z 2 r \theta\left(\mathrm{~S}_{\mathrm{Loss}}(10 \%, 95 \%)\right)="\left(1568019.5999 \measuredangle 66.07^{\circ}\right) " \cdot \mathrm{VA}$
$z 2 r \theta\left(\mathrm{~S}_{\text {Loss }}(25 \%, 95 \%)\right)="\left(3920048.9997 \measuredangle 66.07^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(50 \%, 95 \%)\right)="\left(7840097.9994 \measuredangle 66.07^{\circ}\right)$ " VA
$\operatorname{z2r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(75 \%, 95 \%)\right)="\left(11760146.9991 \measuredangle 66.07^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(100 \%, 95 \%)\right)="\left(15680195.9988 \measuredangle 66.07^{\circ}\right) \mathrm{C} \cdot \mathrm{VA}$
$z 2 r \theta\left(\mathrm{~S}_{\text {Loss }}(10 \%, 90 \%)\right)="\left(1568019.5999 \measuredangle 58.42^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(25 \%, 90 \%)\right)="\left(3920048.9997 \measuredangle 58.42^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(50 \%, 90 \%)\right)="\left(7840097.9994 \measuredangle 58.42^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\text {Loss }}(75 \%, 90 \%)\right)="\left(11760146.9991 \measuredangle 58.42^{\circ}\right) " \cdot \mathrm{VA}$ $\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(100 \%, 90 \%)\right)="\left(15680195.9988 \measuredangle 58.42^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(10 \%, 85 \%)\right)="\left(1568019.5999 \measuredangle 52.47^{\circ}\right)$ " VA
$z 2 r \theta\left(\mathrm{~S}_{\mathrm{Loss}}(25 \%, 85 \%)\right)="\left(3920048.9997 \measuredangle 52.47^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(50 \%, 85 \%)\right)="\left(7840097.9994 \measuredangle 52.47^{\circ}\right)$ " VA
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(75 \%, 85 \%)\right)="\left(11760146.9991 \measuredangle 52.47^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z2r} \mathrm{\theta}\left(\mathrm{~S}_{\mathrm{Loss}}(100 \%, 85 \%)\right)="\left(15680195.9988 \measuredangle 52.47^{\circ}\right) \mathrm{C} \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(10 \%, 50 \%)\right)="\left(1568019.5999 \measuredangle 24.26^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(25 \%, 50 \%)\right)="\left(3920048.9997 \measuredangle 24.26^{\circ}\right)$ " \cdot VA
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(50 \%, 50 \%)\right)=$ "(7840097.9994૮24.26$) " \cdot V A$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(75 \%, 50 \%)\right)="\left(11760146.9991 \measuredangle 24.26^{\circ}\right) " \cdot \mathrm{VA}$
$\mathrm{z} 2 \mathrm{r} \theta\left(\mathrm{S}_{\mathrm{Loss}}(100 \%, 50 \%)\right)="\left(15680195.9988 \measuredangle 24.26^{\circ}\right) " \cdot \mathrm{VA}$

HW02_solution.xmcd, Saved: 03/03/2009

Problem No. 3

For motor with data provided in attached MOTOR_DATA.PDF, calculate following:
A. Connecting cable current for motor operating at 100\% (i.e. Full Load Amps (FLA) and motor operating at Service Factor (SF). Assume motor terminal voltage is nominal per provided data
$\mathrm{I}_{\text {FLA }}:=506 \mathrm{~A}$
$\mathrm{I}_{100 \%}:=\mathrm{I}_{\mathrm{FLA}}=506 \mathrm{~A}$
SF := 1.15

$$
\mathrm{I}_{\mathrm{SF}} \mathrm{~A}:=\mathrm{SF} \cdot \mathrm{I}_{\mathrm{FLA}}=581.9 \mathrm{~A}
$$

B. Calculate operating condition and starting impedances. Estimate starting Power Factor (PF).

$$
\mathrm{U}_{\mathrm{n} _ \text {motor }}:=4 \mathrm{kV} \quad \mathrm{I}_{\mathrm{LRC}}:=3250 \mathrm{~A}
$$

Nominal operating condition (100\% load, 100\% voltage, nominal PF, nominal RPM) impedance is $\mathrm{Z}_{\mathrm{op}}:=\frac{\mathrm{U}_{\mathrm{n} _ \text {motor }}}{\sqrt{3} \cdot \mathrm{I}_{\mathrm{FLA}}}=4.56 \Omega$, at the same time this is a machine "base" impedance. From motor data,
$\mathrm{n}_{\mathrm{n}}:=1780 \mathrm{RPM}, \mathrm{PF}_{\mathrm{n}}:=88 \%, \mathrm{EFF}_{\mathrm{n}}:=96.8 \%, \mathrm{P}_{\mathrm{n}}:=4000 \mathrm{Hp} \cdot 746 \frac{\mathrm{~kW}}{\mathrm{Hp}}=2984 \cdot \mathrm{MW}$
$-j \cdot \operatorname{acos}\left(\frac{P F_{n}}{100}\right)$ deg $=(4.56-0.12 \mathrm{j}) \Omega$
As a result, $\underline{Z}_{\underline{o p}}:=\mathrm{Z}_{\mathrm{op}} \cdot \mathrm{e} \quad=(4.56-0.12 \mathrm{j}) \Omega$
From theory of Induction Machines, for nominal RPM, slip is $s_{n}:=\frac{1800 R P M-n_{n}}{1800 R P M}=0.0111$
Nominal torque of the motor is
$\mathrm{T}_{\mathrm{n}}:=9.55 \cdot \frac{\mathrm{P}_{\mathrm{n}}}{\mathrm{n}_{\mathrm{n}}}=16009.66 \cdot \mathrm{kN} \cdot \mathrm{m} \quad$ starting torque is $\mathrm{T}_{\mathrm{s}}:=0.85 \cdot \mathrm{~T}_{\mathrm{n}}=13608.21 \cdot \mathrm{kN} \cdot \mathrm{m}$, we can approximate that starting real power for starting condition at 1 RPM is $\mathrm{P}_{\mathrm{S}}:=\frac{\mathrm{T}_{\mathrm{s}} \cdot 1 \mathrm{RPM}}{9.55}=1424.94 \cdot \mathrm{~kW}$, as a result starting power factor $\mathrm{PF}_{\mathrm{s}}:=\frac{\mathrm{P}_{\mathrm{s}}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{n} _ \text {motor } \mathrm{I}_{\mathrm{LRC}}}}=0.0633$

For instant when motor is connected to the power supply and current starts flowing but motors is not rotating yet, the maximum RMS value of the current is called Lock- Rotor_Curent (LRC). If assuming that FLA current is a base current, then ratio of $\mathrm{I}_{\mathrm{LRC}}=3250 \mathrm{~A}$ to $\mathrm{I}_{\mathrm{FLA}}=506 \mathrm{~A} \quad$ will represent inverse of the motor impedance at the starting time with slip $:=1$. This value is a total impedance of the motor as seen during tenderization from the motor terminals "inside" the motor.
$\mathrm{Z}_{\text {start_pu }}:=\left(\frac{\mathrm{I}_{\text {LRC }}}{\mathrm{I}_{\mathrm{FLA}}}\right)^{-1}=0.1557 \cdot \mathrm{pu}$ or at the "machine" bases
$Z_{\text {start }}:=Z_{\text {Op }} \cdot\left(\frac{I_{\text {LRC }}}{I_{\text {FL.A }}}\right)^{-1} \cdot e^{-j \cdot a \cos \left(\mathrm{PF}_{\mathrm{s}}\right)}=(0.04-0.71 \mathrm{j}) \Omega$
HW02_solution.xmcd, Saved: 03/03/2009

Problem No. 4

Explain how often NEC code is updated/changed, who proposes/creates/requests changes and what is the process of submitting proposal for changes.

- NEC is updated / changed every 3 years. Latest edition is NEC-2008. Next revision is scheduled for 2011.
- Changes can be proposed by Public and/or any NEC users via "Form For Proposals For xxxx National Electrical Code." Form must be received before due date to be considered for review. The proposal needs to describe what article/paragraph you would like to change/revise/add/eliminate together with new version of the article/paragraph anc substantiation for the proposal.
- Twenty committees work and review proposed revisions. Each comity issues report on proposal (ROP) and "publish"
- Comments from published cycle of ROP are considered for final revision of proposal in "published" in return on comments (ROC).
- NFPA members vote on ROC's inclusion/exclusion.
- NFPA committe votes on amendments and Standard Council issues new NEC.

