Medfum Voltage Switchgear \& Circuit Breaker Ratings and Application

Jim Bowen
Aramco

How Circuit Breakers Work Seminar

continuing education
by Jim Bowen
Aramco

Circuit Breaker Parts

- Current Path \& Insulators
- Interrupter
- Push Rod
- Mechanism

Circuit Breaker
 Mechanism

Circuit Breaker Technology

- Vacuum: 480 Vac -- 38 kV.
- SF6: $69 k V$ \& above in ANSI.
- Bulk Oil: 5 kV \& above (obsolete)
- Air Magnetic: 600 Vac \& below.
- Solid state: active current limiter 15 kV く

Vacuum Circuit Breakers

- Arc forms between the main contacts
- Arc plasma is controlled by the geometry to maintain a diffused arc column
- Interruption of current flow occurs at zero crossing
- Dielectric build up of contact gap exceeds pole to pole voltages

Vacuum Interrupter Design For High Voltage

Arcing in a VI

Current Interruption at Ion Level

JUST BEFORE

JUST AFTER l=0

Ac arcing and interruption phenomena in vacuum

AC Circuit

Interrupting A Capacitive Circuit

Short Circuit Interruption - Success

Short Circuit Interruption Dielectric Failure (RESTRIKES)

Current Chop

Restrikes at zero crossings

I1T0 228 kA pu

 I2zo 228ka pr GAMAAAAAMAAMAAAAMA

I3TO 228 kA pu
AAHAHAAAAAAAAAANA

Restrikes

Various Circuit TRV's

(c)

лวu6em

PowlVac Breaker Type	Max Voltage (kV)	Interrupting Symmetrical (kA rms) Note (1)	Obsolete MVA Class	Continuous Current (A)	Cubicle width (In.)	Power Frequency Withstand (kV)	BLL crest (kV)	Close and Latch (10cycle) Momentary (kA, crest)	\%DC Interrupting Current (\%)	Rated Interrupting Time (3) (cycle/msec)	Short Time Current (3 sec .)	Back to Back Cap Switching (Amps) (4)
05PV36SND	4.76	36	250	1200, 2000	26	19	60	97	50	$3 / 50$	36	
05PV36STD		36	250	$\begin{array}{\|c} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{array}$	36			97			36	
05PV50SND		50	350	1200, 2000	26			135			50	
05PV50STD		50	350	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36			135			50	
05PV63STD	\checkmark	63	500	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36	\checkmark	\checkmark	170	\checkmark	\checkmark	63	1640
15PV25STD	15	25	500	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36	36	95	67	50	$3 / 50$	25	1640
15PV36STD		36	750	$\begin{array}{\|c} \hline 1200,2000, \\ 3000, \\ 4000(2) \end{array}$				97			36	1640
15PV50STD		50	1200	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$				135			50	1640
15PV63STD	\checkmark	63	1500	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \end{gathered}$	∇	∇	V	170	\checkmark	∇	63	1640

Notes:
(1) Interrupting current constant for all voltages less than the maximum voltage. Rated voltage range factor $\mathrm{k}=\mathbf{1}$.
(2) Forced Air Cooling fans required for current in excess of 3000 amps .
(3) 5 cycle breakers available at the same \%dc ratings
(4) Back to back capacitor switching rating is good for $1200,2000,3000$, and 4000 continuous current ratings.
(5) Maximum tripping delay is 2 seconds for all circuit breaker as per the ANSI standards.

Breaker Comparison, 5kV

Purple Lines -- Old Ratings

Blue Lines -- New Ratings

Breaker Rating Comparison, 15kV

Medium Voltage Switchgear

Breaker Compartment

Metal - Clad Barriers

- Compartment for each main switching device
- Separate compartment for feeder and incoming power
- Internal main bus compartment barrier
- Shutters

Metal - Clad Safety Interlocking

- Prevent racking in/out of a closed breaker
- Prevent closing during the racking operation
- Control circuit completed before closing in the operating position

Metal - Clad Safety Interlocking (Cont)

- Hold breaker in place in all positions
- Prevent disconnecting CPT primary fuses unless secondary circuit open
- locking means for lock and tagout
- Prevent release of stored energy to close breaker unless fully charged

Switchgear -Ground Bus

 -Shutters-Lockout means
-Breaker rating interference
-Current transformer

Mechanism Operated Cell (MOC) switch changes state as breaker opens and closes.

One or two voltage transformer roll-out assemblies will fit in the same space as one circuit breaker.

When withdrawn the roll-out assembly positively grounds the primary fuses.

Truck Operated Cell (TOC)

Switch changes state with movement of the breaker in and out of the cell.

Toc and MOC

	Contact ARRANGEMENT FOR TOC AND MOC			
	Normally Open	Normally Closed	AC Contact Rating	DC Contact Rating
Standard	5	4	15A-120VAC 10A-240VAC	10A-125VDC $5 A-250 \mathrm{VDC}$
Option	7	6	15A-120VAC 10A-240VAC	10A-125VDC $5 A-250 \mathrm{VDC}$
Option	8	8	15A-120VAC 10A-240VAC	10A-125VDC $5 A-250 \mathrm{VDC}$

Plug and play vertical sections

- Only a 630A, 20kA device at this time

Minimized bare copper helps prevent arcing fault

Managing the E Field

Rating Structure Standards

- C37.04, C37.06 \& C37.09 - MV Breakers
- C37.20.2 - Metal-Clad Switchgear
- C37.20.7 - Arc Resistant Switchgear
- C37.20.3 - MV Load Interrupter Swgr.
- C37.13, C37.16 \& C37.17 - LV Breakers
- C37.20.1 - Low Voltage Switchgear
- NEMA ICS 1, ICS 2, ICS 3, and ICS 6 Low and Medium Voltage MCC's

Switchgear and Circuit Breakers

- Dielectric tests
- Continuous current
- Short time and momentary

Racking endurance

Breaker

- Short Circuit Interrupting
- Mechanical Endurance
- Load Current
- Definite purpose -- Cap Switching

New Rollout Design with CPT

- Blown Fuse

Voltage Ratings

- Rated Voltage (Rated Maximum Voltage): highest rms voltage
- Power frequency withstand (Hipot): indicates health of dielectric system under ideal condition
- B.I.L.: Basic impulse voltage (1.2 x 50 microsecond wave) for coordination
- Foil Test: Test of the withstand capability of bus insulation
- Partial Discharge indication of level of deterioration within dielectric (not required)
- Chopped for outdoor bkr and switching impulse for 362 kV

Bus Spacing Function of BIL and MFR

Voltage	Air Clearance		Surface Clearance	
	Insulated	Bare	Insulated	Bare
635 V	N/A	$1 "$	N/A	$2 "$
4.76 kV	$2 "$	$31 / 2^{\prime \prime}$	$3 "$	$5 "$
15 kV	$3^{\prime \prime}$	$6 "$	$5 "$	$7 "$
27 kV	$6 "$	$9 "$	$9 "$	$14^{\prime \prime}$
38 kV	$71 / 2 \prime$	$101 / 2 \prime$	$11 "$	$17^{\prime \prime}$

why Insulate lugs??

3M Tape Method for Insulating Bus-Bar Connections $5-35 \mathrm{kV}$ to Meet ANSI C37.20 Requirements

 Instructions

Insulation

 Overlap
Tape Details

	23 or 130C Tape Chart		
Voltage	$[\mathrm{X}]$ Dimension In. (mm)	Straight Bar No. of Half-Lapped Layers	Bolted Connections No. of Half-Lapped Layers
600 Volts	0.5 (13)	1	1
$5-8 \mathrm{kV}$	1.0 (25)	2	3
15 kV	2.0 (51)	3	4
25 kV	2.0 (51)	5	6
35 kV	2.5 (64)	7	8

Rated Dielectric Strength

Altitude De-rating Factors

Low Voltage

Altitude	Voltage	Current
$<6,600 \mathrm{ft}(2000 \mathrm{~m})$	1.00	1.00
$8,500 \mathrm{ft}(2600 \mathrm{~m})$	0.95	0.99
$13,000 \mathrm{ft}(3900 \mathrm{~m})$	0.80	0.96

Medium Voltage

Altitude	Voltage	Current
$<3,300 \mathrm{ft}(1000 \mathrm{~m})$	1.00	1.00
$5,000 \mathrm{ft}(1500 \mathrm{~m})$	0.95	0.99
$10,000 \mathrm{ft}(3000 \mathrm{~m})$	0.80	0.96

Typical Test Set-up

1.2 X 50 Voltage Impulse Wave

Chopped Wave

Current Ratings

- Rated continuous current: maximum current in rms amperes at rated frequency which can be carried continuously without exceeding specified temperature rise.
- 65 C rise with a 40 C ambient for tinned and silver plate joints per ANSI

Conductor Temperature Limits

Type of bus or connection	Limit of hottest spot temperature rise $\left({ }^{\circ} \mathrm{C}\right)$	Limit of hottest spot total temperature $\left({ }^{\circ} \mathrm{C}\right)$
Buses and connections with unplated copper to copper	30	70
Buses and connections silver surfaced or tin surfaced	65	105
Connection to insulated cables unplated copper to copper	30	70
Connections to insulated cables silver surfaced or tin surfaced	45	85

Note: All aluminum buses shall have silver surfaced, tin surfaced, or equivalent connecting joints. Welded bus connections are not considered connecting joints.

Ampacity for same square inches

Varying Ambient Temps

- De-rating is applied for various ambient
- Equipment design does not change only a second nameplate
- Emergency load current capability $4 \mathrm{~h}=$ 1.12
- Requires inspection

Max Ambient	De-rating factor
60	.81
50	.91
40	1.0
30	1.08

Breaker Thermocouples

Continuous Current

Certification

Heat Run

Results

A ph. upper block

 A ph. up. pri. end A ph. lower block A ph. lo. pri. block B ph. upper block 3 ph. upper pri. end B ph. lower blockB ph. lo. pri. block ph. lo. pri. end C ph. upper block Ch. upper block
Ch. up. pri. end C ph. lower block C ph. lo. pri. block C ph. lo. pri end

B ph. line
C ph. line
Aph. bus
B ph. bus
C ph. bus
Rear comp. air Bus comp air Breaker comp. air
A ph.line
B ph. lower block

Three sets of readings at 30 min intervals with no more than a 1 degree change to indicate thermal stability

Equipment Selection

One High

with
 rollouts

- 1200 and 2000 A
- All PT hook-ups available

Two High

- 1200 A
- Limited cable compartment
- MOV's in all classes
- Zero sequence ct

Standard Burden Gurrent Transformers

 Model 780 Fixed Ratio| TYPE | RATIO | THERMAL RATING | THICKNESS (inches) | RELAY ACCURACY CLASS |
| :---: | :---: | :---: | :---: | :---: |
| Standard Burden Fixed Ratio | 150:5 | 2.0/1.5 | 3.38 | C20 |
| | 200:5 | 2.0/1.5 | 3.38 | C20 |
| | 250:5 | 2.0/1.5 | 3.38 | C20 |
| | 300:5 | 2.0/1.5 | 3.38 | C20 |
| | 400:5 | 2.0/1.5 | 3.38 | C50 |
| | 500:5 | 2.0/1.5 | 3.38 | C50 |
| Burden | 600:5 | 2.0/1.5 | 3.38 | C100 |
| | 750:5 | 2.0/1.5 | 3.38 | C100 |
| | 800:5 | 2.0/1.5 | 3.38 | C100 |
| | 1000:5 | 2.0/1.5 | 3.38 | C100 |
| | 1200:5 | 2.0/1.5 | 3.38 | C200 |
| | 1500:5 | 1.5/1.33 | 3.38 | C200 |
| | 1600:5 | 1.5/1.33 | 3.38 | C200 |
| | 2000:5 | 1.5/1.33 | 3.38 | C200 |

Model 785 Fixed Ratio

CT size High Burden CTs

TYPE	RATIO	THERMAL RATING	THICKNESS (inches)	RELAY ACCURACY CLASS
High Burden Fixed Ratio	150:5	2.0/1.5	6.75	C50
	200:5	2.0/1.5	6.75	C50
	250:5	2.0/1.5	6.75	C50
	300:5	2.0/1.5	6.75	C100
	400:5	2.0/1.5	6.75	C100
	500:5	2.0/1.5	6.75	C100
	600:5	2.0/1.5	6.75	C200
	750:5	2.0/1.5	6.75	C200
	800:5	2.0/1.5	6.75	C200
	1000:5	2.0/1.5	6.75	C200
	1200:5	2.0/1.5	6.75	C400
	1500:5	1.5/1.33	6.75	C400
	1600:5	1.5/1.33	6.75	C400
	2000:5	1.5/1.33	6.75	C400

Rear Compartment w/ Power Trough

- 40% Fill
- 3-500MCM
- 2-750MCM
- $N D$ deep - $84^{\prime \prime}$
- ND shallow 72"
- One High cable
- 2 High (bottom cell out bottom) (top cell out top)

Cable Ampacity by Size

This data is based upon 15 kV Okonite EPR $90^{\circ} \mathrm{C}$ cable with a 133\% insulation level, a tape shield, and a polyethylene jacket.

Table J

Cable Ampacity by Size				
Cable Size (kcmil)	Current Capacity in Conduit in Open Air ${ }^{1}$ (Amps)	Current Capacity in Underground Duct ${ }^{1}$ (Amps)	Current Capacity in Cable Tray (Amps)	Current Capacity within Swgr Assembly ${ }^{2}$ (Amps)
350	440	415	460	431
500	535	500	575	537
750	655	610	745	693
1000	755	690	890	831

Notes: 1) Data from published Okonite cable specifications.
2) Data from ANSI.

Cable Fills

Table K

Cable Fill by Condut Size

Cable Size (kemil)	Outside Diamerter (inches)	Cross-sectional Area (Square Inches)	Three-Phase Cross-sectional (Square Inches)	Minimum Conduit Size for Three Cables (inches)
350	1.43	1.61	4.82	4
500	1.55	1.89	5.66	5
750	1.79	2.52	7.55	5
1000	1.92	2.90	8.69	6

Maximum Number of Myers Hubs per Circuit Breaker Cable Entry

Conduit Size (inches)	Hub Centerline Spacing (inches)	One Circuit Breaker Per Vertical Section Top or Eotiom Entry (Number of Hubs)		Two Circuit Breakers Per Vertical Section Top Entry for Top Breaker or Bottom Entry for Bottom Breaker (Number of Hubs)		Two Circuit Ereakers Per Vertical Section All Top or All Bottom Entry Requires Use of Power Cable Trough (Number of Hubs)	
		Base Plan Layouts \#1 and \#3	Base Plan Layouts \#2 and \#4	Base Plan Layouts \#1 and \#3	Base Plan Layouts \#2 and \#4	Base Plan Layouts \#1 and \#3	Base Plan Layouts \#2 and \#4
4	5-3/4	8	12	8	12	Power	3
5	7-1/8	4	8	4	8	Requires	2
6	7-3/4	3	6	3	6	Cell	2

Layout \#4

Stub up

 space

Simple installations

Lug Dimensions

Cable Lugs

Cable Size (komil)	Burndy Model Number	Barrel Length (inches)	Number of Mounting Holes
350	YA31-2N	2	2
500	YA34-2N	$2-1 / 4$	2
750	YA39-2N	$2-7 / 8$	2
1000	YA44-4N	3	4

No one hole lugs !!

Cable Termination Spacing

Flgure 1
Phase to Ground

Figure 2
Same Phase

Flgure 3
Between Phases

Figure 4
Between Phases

Table N

Minimum Cable Clearange				
Basic Insulation Level (kV)	(inches	$\begin{gathered} \mathrm{b} \\ \text { (inches) } \end{gathered}$	(inches)	(inches)
60	3.5	2.0	0.8	0.8
95	6.5	3.5	1.2	0.8

Note: The (a) and (b) dimensions for insulated cables and lugs are $2 "$ for 60 kV BIL and 3 " for 95 kV BIL.

Zero Sequence Sizing

111 Model Zero Sequence Ground Current Transformmers

ITI Model	Window Size (inches)	Window Area (Square Inches)	40\% FIII Area (Square linches)	Maximum Number of Cables at 40\% Fill by Cable Size		
				$\begin{aligned} & 500 \\ & \text { kcmil } \end{aligned}$	750 kcmil	$\begin{aligned} & 1000 \\ & \text { kcmil } \end{aligned}$
143	7.31 diameter	41.9	16.8	8	6	4
590	$\begin{gathered} 4.28 \times 11.28 \\ \text { oval } \end{gathered}$	48	19.2	10	7	6
592	5×14 square	70	28	14	11	9
593	$\begin{aligned} & \hline 8 \times 22 \\ & \text { square } \\ & \hline \end{aligned}$	176	70.4	37	28	24
594	$\begin{aligned} & 8 \times 20 \\ & \text { sauare } \end{aligned}$	160	64	34	25	22
595	$\begin{gathered} \hline 4.6 \times 13.4 \\ \text { square } \\ \hline \end{gathered}$	61	24.4	12	9	8
596	$\begin{gathered} \hline 4.6 \times 17.6 \\ \text { square } \\ \hline \end{gathered}$	80	32	17	12	11

Zero Sequence CT's

Physical sizing of Zero Sequence Ct

Powell Recommended Zero Sequence Ground Current Transformers

Number of Cables	ITI Model \# for 500 kcmil	ITI Model \# for 750 kcmil	ITI Model \# for 1000 kcmil
1 Per Phase	143	143	143
2 Per Phase	590	590	592
3 Per Phase	594	594	594
4 Per Phase	594	594	594
5 Per Phase	594	594	Not Recommended

Cutaway View

Bus Drops Hole Pattern

Bus Drop Mounting Holes

Line Side Busating (Amps)	Number of Bus Bars Per Phase	Dimension of Each Bus Bar (inches)	Number of Holes Provided for Bus Dro (NEMA Pattern)
1200	1	$1 / 4 \times 4$	4
2000	1	$1 / 2 \times 6$	6
3000	2	$1 / 2 \times 6$	6
4000	2	$5 / 8 \times 6$	6

How many lugs can we land on a drop

Number of Bus Drops by Line Bus Ampacity One Gircuit Breaker per Vertical Section

Number of

lugs per drop for one high swgr

Number of Bus Drops by Line Bus Ampacity One Circuit Breaker per Vertical Section			
Number of Bus Drops	Recommended Maximum Number of Cable Lugs per Phase		
	500 kcmil	750 kcmil	1000 kcmil
1200 Amp Line Bus (Single Bar 1/4 x 4)			
1	3	2	1
2	4	2	2
2000 Amp Line Bus (Single Bar 1/2 x 6)			
1	4	3	1
2	5	4	2
3	6	5	3
3000 Amp Line Bus (Two Bars each 1/2 $\times 6$)			
3	5	5	3
4	6	6	4
5	8	8	5
4000 Amp Line Bus (Two Bars each 5/8 x 6)			
3	5	5	3
4	6	6	4
5	8	8	5

Lugs per drop

Cable

 trough And Surge arrestors

Lugs per drop for two high swgr

Number of Bus Drops by Line Bus Ampacity - Two Circuit Breakers per Vertical Section for Compartment with Power Trough

Number of
Bus Drops
Recommended Maximum Number of Cable Lugs per Phase

500 kcmil
750 kcmil
1000 kcmil

1200 Amp Line Bus (Single Bar $1 / 4 \times 4$)

1	3	2	1
2000 Amp Line Bus (Single Bar 1/2 x 6)			
1	4	3	1

Lugs per Drop 2 High No Trough

Number of Bus Drops by Line Bus Ampacity - Two Gircuit Breakers per Compartment without Power Trough

Number of Bus Drops

Recommended Maximum Number of Cable Lugs per Phase

500 kcmil (

1200 Amp Line Bus (Single Bar $1 / 4 \times 4$)

1	3	2	1
2	4	2	2

2000 Amp Line Bus (Single Bar $1 / 2 \times 6$)

1	4	3	1
2	5	4	2
3	6	5	3

Circuit Breaker Selection

Short Circuit Current Contribution

Utility

Generator

generator
Synchronous Motor Induction Motor

Total Fault Current
 YNCHRONO
MOTOR

Symmetrical Asymmetrical

Max interrupting @ Min voltage

Old MVA Short Circuit Rating

System Capability
 Equipment Rating

- Short Circuit at

Contact part

- X/R
- Possible asymmetrical current
- Interrupting rating
- \%dc at contact part
- Back-up clearing time
- Short time rating
- Momentary current
- Latch \& Close of Breaker
- Momentary \& Short Time of Switchgear

SC Latch \& Close Ratings

- Rated Momentary Current: The maximum total current the switchgear shall be required to withstand; peak of the maximum cycle
- Max current breaker can latch and stay closed
- New standard - in crest amperes
- Asymmetrical clearing time can be 0.2 cycles longer

SC Interrupting Ratings

- Symmetrical current in rms amperes breaker interrupt through out voltage range
- Rating is based on current at time of contacts part
- Test assumes a min. relay time of $1 / 2$ cycle
- Max relay tripping delay up to 2 sec

Breaker Short Circuit

Bolted Fault vs. Arcing Fault in Medium-Voltage Switchgear

- Bolted Faults
- Current \mathbf{I}^{2} t
- Mechanical forces
- Testing
- Interrupting capability
- Thermal capacity of bus
- Mechanical bracing of bus

Bus bracing failure

3000A Main bus at 63kA sym / 135kA crest

Max force from fault

$F=43.2 k I^{2}-\frac{L}{s} x 0^{-7}$
 S

$\mathrm{F}=$ force at crest for single phase fault
$\mathrm{k}=$ Shape factor
$\mathrm{I}=$ current per conductor in amps
$\mathrm{L}=$ length of conductor in feet
$\mathrm{S}=$ distance between conductor centers in inches

S Factor Chart

Short Circuit Current

Contact Part for a 3 cycle breaker
Structure of an Asymmetirical Current VNave

Circuit Breaker Timing

(*) RECLOSING TIME IS THE TIME INTERVAL BETWEEN ENERGIZATION OF THE TRIP CIRCUIT AND MAKING OF THE PRIMARY ARCING CONTACTS. WHERE LOW OHMIC RESISTORS ARE USED, MAKING OF THE RESISTOR CONTACT ON RECLOSURE MAY BE MORE SIGNIFICANT.

Figure 2- Operating Time

Fault began @ t=0
Relay tells breaker to open @ $t=1 / 2$ cycle
3 cycle breaker takes 11/2 cycles before contact part

Typical Circuit Breaker Timing

Opening time (cycles)	Rated interrupting time
1.0	2 cycle
$1.5(25 \mathrm{~ms})$	3 cycle
$2.5(42 \mathrm{~ms})$	5 cycle
3.5	8 cycle

Contact part $=$ opening time $+1 / 2$ cycle for minimum relay time

3 phase fault current

Asymmetrical

 current
Mechanism Speed

- Breaker Timing
- First time operation
- Latch operation
- Speed
- Breaker Trip

Current vs voltage

Asymmetrical Capability

- Based on X/R of 17 @ 60 Hz and 14 @ 50 Hz
- Breaker ability fixed at contact part time
- Asymmetrical capability is constant for entire time up to max tripping delay of 2 seconds
- Old S factors and new \%DC

$$
I_{\text {TOTAL }}=I_{\text {symetrical }} \sqrt{1+2\left(\frac{\% d c}{100}\right)^{2}}
$$

Short Circuit Current

Contact Part for a 3 cycle breaker
Structure of an Asymmetirical Current VNave

New Capability Curve

Figure 1-Percent dc component of asymmetric current as a function of contact parting time

Changes in X/R

Figure 2-Percent de required at contact part for asymmetrical tests (values based on a range of X/R factors at 60 Hz)

Short Circuit Current

Structure of an Asymmetrical Current Wave

Gen Bkr Close and Trip

Ir 15.2 mm pu

Generator Breaker

Generator Bkr Interruption

ITOOp 12.6 A pu

Recovery Voltage

PowlVac Breaker Type	Max Voltage (kV)	Interrupting Symmetrical (kA rms) Note (1)	Obsolete MVA Class	Continuous Current (A)	Cubicle width (In.)	Power Frequency Withstand (kV)	BLL crest (kV)	Close and Latch (10cycle) Momentary (kA, crest)	\%DC Interrupting Current (\%)	Rated Interrupting Time (3) (cycle/msec)	Short Time Current (3 sec .)	Back to Back Cap Switching (Amps) (4)
05PV36SND	4.76	36	250	1200, 2000	26	19	60	97	50	$3 / 50$	36	
05PV36STD		36	250	$\begin{array}{\|c} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{array}$	36			97			36	
05PV50SND		50	350	1200, 2000	26			135			50	
05PV50STD		50	350	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36			135			50	
05PV63STD	\checkmark	63	500	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36	\checkmark	\checkmark	170	\checkmark	\checkmark	63	1640
15PV25STD	15	25	500	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36	36	95	67	50	$3 / 50$	25	1640
15PV36STD		36	750	$\begin{array}{\|c} \hline 1200,2000, \\ 3000, \\ 4000(2) \end{array}$				97			36	1640
15PV50STD		50	1200	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$				135			50	1640
15PV63STD	\checkmark	63	1500	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \end{gathered}$	∇	∇	V	170	\checkmark	∇	63	1640

Notes:
(1) Interrupting current constant for all voltages less than the maximum voltage. Rated voltage range factor $\mathrm{k}=\mathbf{1}$.
(2) Forced Air Cooling fans required for current in excess of 3000 amps .
(3) 5 cycle breakers available at the same \%dc ratings
(4) Back to back capacitor switching rating is good for $1200,2000,3000$, and 4000 continuous current ratings.
(5) Maximum tripping delay is 2 seconds for all circuit breaker as per the ANSI standards.

Circuit Breaker Timing

(*) RECLOSING TIME IS THE TIME INTERVAL BETWEEN ENERGIZATION OF THE TRIP CIRCUIT AND MAKING OF THE PRIMARY ARCING CONTACTS. WHERE LOW OHMIC RESISTORS ARE USED, MAKING OF THE RESISTOR CONTACT ON RECLOSURE MAY BE MORE SIGNIFICANT.

Figure 2- Operating Time

Asymmetrical Capability

- Based on X/R of 17 @ 60 Hz and 14 @ 50 Hz
- Breaker ability fixed at contact part time
- Asymmetrical capability is constant for entire time up to max tripping delay of 2 seconds
- Old S factors and new \%DC

$$
I_{T O T A L}=I_{\text {symetrical }} \sqrt{1+2\left(\frac{\% d c}{100}\right)^{2}}
$$

Short Circuit Current

Contact Part for a 3 cycle breaker
Structure of an Asymmetirical Current VNave

3 phase fault current

Asymmetrical curfent

ITOC1 $12.6 \mathrm{~A} \mathrm{pu-Cl}$
 ITOOp 12.6 A pu

 IfPAAAAAAAOAA

I1TO 228 kA pu \qquad

 Iзто 228ka pu \quad A

Information for Choosing an MV Circuit Breaker

- System operating voltage \& frequency
- Continuous current of circuit
- Short-circuit current
- Close-and-latch (crest) current
- Interrupting current (rms) at contact part
- System X/R ratio
- Service conditions: altitude, ambient temperature, solar radiation, seismic, etc...

Choosing an MV CB Rated Voltage

- Rated voltage of circuit breaker must equal or exceed maximum voltage at which system will operate
- Standard ratings are $4.76 \mathrm{kV}, 8.25 \mathrm{kV}, 15$ kV , and 38 kV
- Higher voltage breaker may be used at lower voltage

Choosing an MV CB Rated B. I. L.

- B.I.L. rating of circuit breaker should equal or exceed system insulation coordination.
- Standard ratings are 60 kV for 4.76 kV breakers, 95 kV for 8.25 kV and 15 kV breakers, and 150 kV for 38 kV breakers
- Properly applied surge arresters will protect switchgear against surges above B.I.L. rating

Choosing an MV CB Rated Frequency

- ANSI/IEEE standards specify rated frequency of 60 Hertz
- ANSI/IEEE standards allow 60 Hz tests to qualify breaker for 50 Hz use
- Use at other frequencies requires special engineering consideration
- Long arcing time for low frequencies
- Overheating for higher frequencies

Choosing an MV CB Continuous Current

- Continuous current rating of circuit breaker must equal or exceed maximum continuous current of circuit
- Standard ratings are $1200 \mathrm{~A}, 2000 \mathrm{~A}$, and 3000 A
- For currents over 3000 A:
- Redesign system
- Force cool breaker
- Parallel breakers

Choosing an MV CB Short-Circuit Current

Back of the Envelope Short Circuit Calculations

Powered by Safety ${ }^{\circ}$

Choosing an MV Circuit Breaker

Short-Circuit Current

- Forget MVA! Breakers are rated in kA
- Breaker rated short-circuit current, in $\mathrm{kA}_{\text {rms }}$, must equal or exceed available fault current at breaker rated interrupting time (3 cycle $/ 5$ cycle, or $50 \mathrm{~ms} / 83.3 \mathrm{~ms}$, per standards).
- Use K factor on older breakers.
- Newer designs all have K of 1 .
- Consider X/R Ratio

K=1 Circuit Breakers

- Old k factor breaker's interrupting rating increased as voltage went down
- $\mathrm{K}=1$ breakers are constant interrupting breakers

Choosing an MV Circuit Breaker

X/R Considerations

- Simplified E / X method - up to 100% of breaker rating if X/R does not exceed 15
- Simplified E/X method - up to 80% of breaker rating for any X/R
- For currents over 80% and X / R over 15 , more exact short circuit calculations are required

Choosing an MV Circuit Breaker

Short Time Current

- Per ANSI Standards, rated short-time current equals maximum symmetrical interrupting capability
- Time is 2 seconds for metal-clad switchgear and 3 seconds for breakers
- Relaying needs to ensure that backup breaker is tripped before front-line breaker exceeds its short-time rating

Choosing an MV Circuit Breaker

Momentary Current

- Momentary current equals close-and-latch current of circuit breaker
- This rated current must exceed maximum available on system
- Now stated as crest (peak) current or as rms asymmetrical current
- Be sure that you compare currents stated in same terms
- For ANSI ratings,
- 1.6X = tested asymmetrical rms
- $2.7 \mathrm{X}=$ tested crest

Short Circuit Current

Structure of an Asymmetrical Current Wave

Latch and Close

(anำ	MAMAAAAAAAAAA
I2TO 228 kA pu \qquad	
	HANOMAOAMAAAA

C37.010-1999 - Figure 2

Figure 2 shows the sequence of events in the course of a circuit interruption and reclosure.

${ }^{\text {a }}$ Reclosing time is the time interval between energizing the trip circuit and making the primary arcing contacts.
Where low ohmic resistors are used, making the resistor contact on reclosure may be more significant.
Figure 2-Operating time

Short Circuit Terminology

Commonly Used Per Unit Formulae

When Necessary Use:
(6) $\frac{\text { NEW }}{\text { p.u.X }}=O L D$ p.u.X $\times \frac{(O L D ~ k V)^{2}}{(N E W ~ k V)^{2}}$

New p.u.X based on voltage rating of equipment being different from study base voltage

C37.010-1999 - Table 6

Table 9-Range and typical values of X / R ratios of system components at 60 Hz

System component	Range	Typical values
Large generators and hydrogen-cooled synchronous condensers	$40-120$	80
Power transformers	see Figure 18	-
Induction motors	see Figure 18	-
Small generators and synchronous motors	see Figure 19	-
Reactors	$40-120$	80
Open wire lines	$2-16$	5
Underground cables	$1-3$	2

NOTE-Actual values should be obtained, if practical.

Example System - Single Line Diagram

Find Utility X_{pu} \& R_{pu}

Assume Base of 100 MVA
Convert Everything to $X_{p u} \& R_{p u}$

$$
Z_{U t i l i t y}=\frac{M V A_{\text {BASE }}}{M V A_{\text {Utility }}}=\underline{0.25}
$$

Given

$\Theta_{U \text { Utility }}=\arctan \frac{X}{R}=\arctan (7)=\underline{81.87^{\circ}}$
$X_{p u}=\left(Z_{\text {Utility }}\right)(\sin \Theta)=0.25 \sin \left(81.87^{\circ}\right)=\underline{0.2475}$
$R_{p u}=\left(Z_{\text {Utility }}\right)(\cos \Theta)=0.25 \cos \left(81.87^{\circ}\right)=\underline{0.0354}$

C37.010-1999 - Figure 18

Figure $18-X / R$ range for three-phase induction motors at 60 Hz

Find Motor X_{pu} \& R_{pu}

$$
Z_{\text {Motor, pu }}=Z_{M} \frac{M V A_{\text {BASE }}}{M V A_{\text {Motor }}}
$$

For $480 \mathrm{~V}_{\mathrm{AC}}$ assume $\underline{1 \mathrm{HP}=1 \mathrm{kVA}}$
From 6.4.1, foot notec, $\quad X_{d}^{\prime \prime}=\frac{1}{L R A_{p u}}$
To calculate the interrupting duty in per unit, use $3.0 \mathrm{X}_{\mathrm{d}}^{\prime \prime}$ (Table 7)

$$
\begin{aligned}
& X_{p u}=3 \frac{1}{L R A_{p u}} \frac{M V A_{B A S E}}{M V A_{\text {Motor }}}=3 \frac{1}{6} \frac{100}{0.075}=\underline{666.67} \\
& R_{p u}=\frac{X_{p u}}{X / R}=\frac{666.67}{10}=\underline{66.67}
\end{aligned}
$$

C37.010-1999 - Table 7

6.4.1 Rotating machine reactances

Basically, initial short-circuit current of rotating machines is determined by the machine subtransient reactances. For the simplified and more accurate methods of short-circuit current calculation, Table 7 shows the reactances that are used.

Table 7-Reactances

Type of rotating machine	Positive sequence reactances for calculating	
	Interrupting duty (per unit)	Closing and latching duty (per unit)
All turbo-generators, all hydro-generators with amortisseur windings, and all condensers ${ }^{\text {a }}$	$1.0 \mathrm{X}^{\prime \prime}{ }_{d}$	$1.0 \mathrm{X}^{\prime \prime}{ }_{d}$
Hydro-generators without amortisseur windings ${ }^{\text {a }}$	$0.75 \mathrm{X}_{d}{ }_{d}$	$0.75 \mathrm{X}_{d}{ }_{d}$
All synchronous motors ${ }^{\text {b,d,e }}$	$1.5 \mathrm{X}^{\prime \prime}{ }_{d}$	$1.0 \mathrm{X}^{\prime \prime}{ }_{d}$
Induction motors ${ }^{\text {c,d,e }}$		
Above 1000 hp at $1800 \mathrm{r} / \mathrm{min}$ or less Above 250 hp at $3,600 \mathrm{r} / \mathrm{min}$	$1.5 \mathrm{X}^{\prime \prime}{ }_{d}$	$1.0 \mathrm{X}^{\prime \prime}{ }_{d}$
From 50 hp to 1000 hp at $1800 \mathrm{r} / \mathrm{min}$ or less From 50 hp to 250 hp at $3,600 \mathrm{r} / \mathrm{min}$	$3.0 \mathrm{X}^{\prime \prime}{ }_{d}$	$1.2 \mathrm{X}^{\prime \prime}{ }_{d}$

Neglect all three-phase induction motors below 50 hp and all single-phase motors

C37.010-1999 - Table 7

${ }^{a} X_{d}$ of synchronous rotating machines is the rated-voltage (saturated) direct-axis transient reactance.
${ }^{\mathrm{b}} \mathrm{X}^{\prime \prime}{ }_{d}$ of synchronous rotating machines is the rated-voltage (saturated) direct-axis subtransient reactance.
${ }^{c} X^{\prime \prime} d$ of induction motors equals 1.00 divided by per-unit locked-rotor current at rated voltage.
${ }^{d}$ The current contributed to a short circuit by induction motors and small synchronous motors may usually be ignored on utility systems, except station service supply systems and at substations supplying large industrial loads. At these locations, as well as in industrial distribution systems, locations close to large motors, or both, the current at 0.5 cycle will be increased by the motor contribution to a greater degree, proportionately, than the symmetrical current will be increased at minimum contact parting time. In these cases, an additional calculation of 0.5 -cycle current should be made using the methods of 6.3 .1 or 6.3 .2 and the appropriate reactance values given in Table 7 under the heading "Closing and latching duty." A 2.6 multiplying factor should be used for asymmetry, and this result must not exceed the closing and latching capability (in peak current) of the circuit breaker being used.
${ }^{\mathrm{e}}$ These rotating machine reactance multipliers and the E / X amperes multipliers of Figure 8 and Figure 9 include the effects of ac decay. However, the methods for calculating system short-circuit current described in 6.3.1 and 6.3.2 incorporate sufficient conservatism to permit the simultaneous use of a rotating machine reactance and an E / X amperes multiplier from Figure 8 or Figure 9 .

C37.010-1999 - Figure 19

Figure 19-X/R range for small solid rotor and salient pole generators and synchronous motors at $\mathbf{6 0 ~ H z}$

Find Generator X_{pu} \& R_{pu}

$$
Z_{\text {Generator,pu }}=Z_{G} \frac{M V A_{\text {BASE }}}{M V A_{\text {Generator }}}
$$

Given

$$
\begin{aligned}
& X_{p u}=X_{d}^{\prime \prime} \frac{M V A_{\text {BASE }}}{M V A_{\text {Generator }}}=0.1 \frac{100}{5}=\underline{2.0} \\
& R_{p u}=\frac{X_{p u}}{X / R}=\frac{2.0}{30}=\underline{0.067}
\end{aligned}
$$

C37.010-1999 - Figure 17

Based on class of transformer, obtain the proper factor from the table below. Multiply the transformer MVAampere rating by this factor before using Figure 17 to obtain the typical X / R value.

Figure 17-X/R range for power transformers at 60 Hz

Find Transformer T_{1} and $\mathrm{T}_{2}, \mathrm{X}_{\mathrm{pu}} \& \mathrm{R}_{\mathrm{pu}}$

$$
\begin{aligned}
& Z_{X F M R, p u}=Z_{X F M R} \frac{M V A_{B A S E}}{M V A_{X F M R}} \\
& X_{1, p u}=X \frac{M V A_{B A S E}}{M V A_{X F M R, 1}}=0.057373 \frac{100}{5}=\underline{1.147} \\
& R_{1, p u}=R \frac{M V A_{B A S E}}{M V A_{X F M R, 1}}=0.003825 \frac{100}{5}=\underline{0.077} \\
& X_{2, p u}=X \frac{M V A_{B A S E}}{M V A_{X F M R, 2}}=0.059184 \frac{100}{1}=\underline{5.918} \\
& R_{2, p u}=R \frac{M V A_{B A S E}}{M V A_{X F M R, 2}}=0.009864 \frac{100}{1}=\underline{.986}
\end{aligned}
$$

Find Feeder F_{1} and $\mathrm{F}_{2}, \mathrm{X}_{\mathrm{pu}}$ \& R_{pu}

$$
Z_{\text {Feeder,pu }}=Z_{F} \frac{M V A_{B A S E}}{k V^{2}} \quad \underline{X \Omega / 1000^{\prime}=0.054} \quad \underline{R \Omega / 1000^{\prime}=0.16}
$$

$$
X_{1, p u}=X \Omega \frac{\# 1}{1000^{\prime}} \frac{M V A_{\text {BASE }}}{k V^{2}}=0.054 \frac{500^{\prime}}{1000} \frac{100}{13.8^{2}}=\underline{0.014}
$$

$$
R_{1, p u}=R \Omega \frac{\# 1}{1000} \frac{M V A_{B A S E}}{k V^{2}}=0.16 \frac{500^{\prime}}{1000} \frac{100}{13.8^{2}}=\underline{0.042}
$$

$$
X_{2, p u}=X \Omega \frac{\# 2}{1000^{\prime}} \frac{M V A_{B A S E}}{k V^{2}}=0.054 \frac{300^{\prime}}{1000} \frac{100}{13.8^{2}}=\underline{0.009}
$$

$$
R_{2, p u}=R \Omega \frac{\# 2}{1000} \frac{M V A_{B A S E}}{k V^{2}}=0.16 \frac{300^{\prime}}{1000} \frac{100}{13.8^{2}}=\underline{0.025}
$$

Solve for Fault at Bus 2

$$
\begin{aligned}
& Z_{U}=0.112+j 1.395=1.39 \angle 85.41^{\circ} \\
& Z_{M}=67.69+j 672.6=676 \angle 84.25^{\circ}
\end{aligned}
$$

Calculate 3φ Fault Current

$$
\begin{aligned}
& Z_{U \& M}=Z_{U} \| Z_{M}=\frac{945.71 \angle 169.67^{\circ}}{677.39 \angle 84.26^{\circ}}=\underline{1.396 / 85.41^{\circ}}=\underline{0.112+j 1.392} \\
& Z_{\text {eq }}=Z_{U \& M} \| Z_{G}=\frac{2.807 \angle 172.78}{3.406 \angle 86.57^{\circ}}=\underline{0.824 \angle 86.21^{\circ}}=\underline{0.054+j 0.822} \\
& I_{\text {BASE }}=\frac{100}{13.8 \sqrt{3}}=\underline{4.184 k A} \\
& I_{\text {FAULT }}=\frac{1}{Z_{\text {eq }}}\left(I_{\text {BASE }}\right)=\frac{1}{0.824}(4.184 k A)=\underline{5.078 \mathrm{kA}} \\
& \frac{X}{R}=\frac{0.822}{0.054}=\underline{15.11}
\end{aligned}
$$

Calculate 3φ Fault Current

$$
\begin{aligned}
& R_{\text {Wibh,Woor }}=\frac{1}{1 / 112^{+1 / 67.69}+1 / .092}=\underline{0.0505} \\
& X_{\text {Wibh, Woor }}=\frac{1}{1 / 1.395+1 / 672.59+1 / 2.009}=\underline{0.8221}
\end{aligned} \quad \frac{X}{R}=\frac{0.8221}{0.0505}=\underline{16.27}
$$

$$
Z_{\text {Wiathooor }}=0.0505+j 0.8221=\underline{0.824 \angle 86.48^{\circ}}
$$

$$
Z_{\text {IgnoringMoor }}=0.0506+j 0.8231=\underline{0.825} \angle 86.49^{\circ}
$$

Short Cuts

Compare to Vector :

$$
\begin{aligned}
& I_{F_{A U L T_{\text {Angular }}}=\frac{1}{0.824}(4.184 \mathrm{kA})=\underline{5.08 \mathrm{kA}}} \\
& I_{F_{A U L T} \text { IgnoringRe sis an ce }}=\frac{1}{0.822}(4.184 \mathrm{kA})=\underline{5.09 \mathrm{kA}} \\
& I_{\text {FAULL }_{\text {IgroringMoor }}=}=\frac{1}{0.823}(4.184 \mathrm{kA})=\underline{5.07 \mathrm{kA}}
\end{aligned}
$$

C37.010-1999 - Table 10

Table 10 -Equivalent system X / R ratios (at 60 Hz) at typical locations for quick approximations

Type of circuit	Range
Synchronous machines connected directly to the bus or through reactors	$40-120$
Synchronous machines connected through transformers rated 100 MVA and larger	$40-60$
Synchronous machines connected through transformers rated 25 MVA to 100 MVA for each three- phase bank	$30-50$
Remote synchronous machines connected through transformers rated 100 MVA or larger for each three-phase bank, where the transformers provide 90% or more of the total equivalent impedance to the fault point	$30-50$
Remote synchronous machines connected through transformers rated 10 MVA to 100 MVA for each three-phase bank, where the transformers provide 90% or more of the total equivalent impedance to the fault point	$15-40$
Remote synchronous machines connected through other types of circuits, such as: transformers rated 10 MVA or smaller for each three-phase bank, transmission lines, distribution feeders, etc.	15 or less

Typical Circuit Breaker Timing

Opening time (cycles)	Rated interrupting time
1.0	2 cycle
$1.5(25 \mathrm{~ms})$	3 cycle
$2.5(42 \mathrm{~ms})$	5 cycle
3.5	8 cycle

Contact part $=$ opening time $+1 / 2$ cycle for minimum relay time

C37.010-1999 - Figure A. 10

Figure A.10-Three-phase fault multiplying factors that include effects of ac and dc decrement (at 60 Hz)

C37.010-1999 - Figure A.11

Figure A.11-Line-to-ground fault multiplying factors that include effects of ac and dc decrement

C37.010-1999 - Figure A. 12

Figure A.12-Three-phase and line-to-ground fault multiplying factors that include effects of dc decrement only

Asymmetrical Capability

- Based on X/R of 17 @ 60 Hz and $14 @ 50 \mathrm{~Hz}$
- Breaker ability fixed at contact part time
- Asymmetrical capability is constant for entire time up to max tripping delay of 2 seconds
- Old S factors and new \%DC

$$
I_{\text {TOTAL }}=I_{\text {Symmetrical }} \sqrt{1+2 \frac{\% d c}{100}}
$$

Choosing an MV CB Using K Factor

- K is rated voltage range factor, a ratio between rated maximum voltage (V) and voltage at maximum symmetrical interrupting capability, which $=\mathrm{V} / \mathrm{K}$
- At voltages between V and V/K, symmetrical interrupting capability is:

$$
\mathrm{I}_{\mathrm{sc}}=\mathrm{I} \% \mathrm{~V} / \text { System Voltage }
$$

- At voltages of V/K and below, sym-metrical interrupting capability is KI

Choosing Metal-Clad Switchgear

- The ratings of metal-clad switchgear in general follow the ratings of the circuit breaker used in the switchgear
- Main bus continuous current rating must be specified for the switchgear
- Standard ratings are 1200 A, 2000 A, and 3000 A
- Higher ratings may be available, but designers should attempt to use standards

SKM Model

UTIL-0001
Isc 3P 10000.0 MVA

XF2-0001
Size 50000.00 kVA
Pri Delta
Sec Wye-Ground
\%Z 8
X/R 35

XF2-0003
Size 50000.00 kVA
Pri Delta
Sec Wye-Ground
\%Z 8
X/R 35

BUS-0003
13800 V

CBL-0001
$1-$ \# 10.0 ft

BUS-0001
13800 V

Choosing an MV CB X/R Considerations

- Simplified E/X method of calculating shortcircuit current may be used up to 100% of breaker rating if X / R does not exceed 15
- Simplified E/X method may be used up to 80\% of breaker rating for any X/R
- For currents over 80% and X/R over 15 , more exact short circuit calculations are required

SKM Model

UTIL-0001

BUS-0002
ANSI 3P CREST Mom 107.153 kA ANSI Sym3 3P INT 41.837 kA Interrupt X/R 15.0

XF2-0003

BUS-0003
ANSI 3P CREST Mom 125.053 kA ANSI Sym3 3P INT 53.612 kA Interrupt X/R 30.5

3 cycle breaker

CBL-0001

SKM Momentary

x / r greater than 15

Three Phase momentary duty report PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO

BUS-0001 E/Z: $\quad 46.489$ KA AT -88.12 DEG (1111.19 MVA) X/R: $\quad 30.49$ SYM*1.6: $74.382 \mathrm{KA} \quad$ MOMENTARY BASED ON X/R: 75.357 KA SYM*2.7: $125.520 \mathrm{KA} \quad$ CREST BASED ON X/R: 125.053 KA VOLTAGE: 13800. EQUIV. IMPEDANCE $=0.0056+\mathrm{J} 0.1713$ OHMS CONTRIBUTIONS: BUS-0002 23.245 KA ANG: -88.12 CBL-0001 BUS-0003 23.244 KA ANG -88.12

Mom

 not RMS anymore
Crest value

Short Circuit Interrupting

ThreE P 3 cycle
 =: breaker

INTERRUPTING PRE FAULT VOLTAGE: 1.0000 MODEL TRANSFORMER TAPS: NO NACD OPTION: ALL REMOTE
X / R greater than
15 must consider
assym

BUS-0001 E/Z: $\quad 46.489$ KA AT -88.12 DEG (1111.19 MVA) X/R: 30.49 VOLTAGE: 13800. EQUIV. IMPEDANCE $=0.0056+\mathrm{J} 0.1713$ OHMS CONTRIBUTIONS: BUS-0002 23.245 KA ANG: -88.12
CBL-0001 BUS-0003 23.244 KA ANG: -88.12

Girculk Breaker Ratings

PowlVac Breaker Type	Max Voltage (kV)	Interrupting Symmetrical (kA rms) Note (1)	Obsolete MVA Class	Continuous Current (A)	Cubicle width (In.)	Power Frequency Withstand (kV)	BIL crest (kV)	Close and Latch (10cycle) Momentary (kA, crest)	\%DC Interrupting Current (\%)	Rated Interrupting Time (3) (cycle/msec)	Short Time Current (3 sec.)	Back to Back Cap Switching (Amps) (4)
05PV36SND	4.76	36	250	1200, 2000	26	19	60	97	50	3 / 50	36	
05PV36STD		36	250	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36			97			36	
05PV50SND		50	350	1200, 2000	26			135			50	
05PV50STD		50	350	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36			135			50	
05PV63STD	∇	63	500	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36	\downarrow	\checkmark	170	∇	\downarrow	63	1640
15PV25STD	15	25	500	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	36	36	95	67	50	$3 / 50$	25	1640
15PV36STD		36	750	$\begin{gathered} 1200,2000 \\ 3000, \\ 4000(2) \end{gathered}$				97			36	1640
15PV50STD		50	1200	$\begin{gathered} \text { 1200, 2000, } \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$				135			50	1640
15PV63STD	∇	63	1500	$\begin{gathered} \hline 1200,2000, \\ 3000, \\ 4000(2) \\ \hline \end{gathered}$	\downarrow	∇	∇	170	∇	∇	63	1640

Notes:
(1)
(2)

Interrupting current constant for all voltages less than the maximum voltage. Rated voltage range factor $\mathrm{k}=\mathbf{1}$.
Forced Air Cooling fans required for current in excess of $\mathbf{3 0 0 0} \mathbf{a m p s}$.
5 cycle breakers available at the same \%dc ratings
Back to back capacitor switching rating is good for $\mathbf{1 2 0 0}, \mathbf{2 0 0 0}, \mathbf{3 0 0 0}$, and 4000 continuous current ratings.
Maximum tripping delay is $\mathbf{2}$ seconds for all circuit breaker as per the ANSI standards.

3-Phase Fault Currents: (Prefault Voltage $=100 \%$ of the Bus Nominal Voltage)

3-Phase Fault Currents: (Prefault Voltage $=100 \%$ of the Bus Nominal Voltage)

Method: EEEE-XR is calculated from separate R \& X networks.
Protective device duty is calculated based on total fault current.
The multiplication factors for high volage circuit-breaker and high voltage bus momentary duty (asymmetrical and crest values) are calculated based on system XR.

* Indicates a device with momentary duty exceeding the device apability

38kV 40kA circuit breaker cell

Arc Resistant Switchgear

- Arc flash hazards: pressure wave, heat, and shrapnel
- Accessibility: Type 1, Type 2 and Type $2 b$
- C37.20.7 a combined test for $1 / 2$ sec

Bolted Fault vs. Arcing Fault in Medium-Voltage Switchgear

- Arc Faults
- Mechanical forces and Current $\mathrm{I}^{2} \mathrm{t}$
- Heating and burning of conductors and enclosure
- Radiation
- Rapid overpressure of equipment and
 surroundings

Arc Fault Energy Directed Away from the Technician

MV Swgr

- Long creep paths to help eliminate tracking faults
- Minimal phase to phase supports
- Minimize hot spots
- Conductor size
- Surface area
- Air flow rate
- Racking method
- Assure alignment
- Maintainable

Contamination and Aging

- Reliability center maintenance
- Climate controlled Substation
- Anti-condensation heaters
- Long creep paths
- Thermal limits
- Mechanism aging
- Too many operation - mechanical wear
- Too few operation - mechanical freezing

Visible corona across a contaminated VI

Additive Effective - Surface Flashover

- Non-uniform Electrical stresses
- Localized partial discharges
- Elevated temp and ozone
- Reactions with the polymeric insulation
- Low impedance high stress areas
- Free electrons
- Less stable molecules
- Electron Avalanche

Additive Effects - Flashover in Air

- Per design low level voltage stress limits $1 "=20 \mathrm{kV}$
- Few free electrons
- No current flow
- As field strength increase or chemical bonding
- More free electrons and more collisions
- Process continues resulting in conductive path
- Resulting in electron Avalanche

Failure Mechanism - Dielectric System

- Contamination
- Condensation

Failure Mechanis

- Dielectric System
- Temperature
- Altitude
- Contamination
- Partial Discharge
- Mechanical System
- Temperature
- Contamination

Choosing an MV CB Service Conditions - Other

- Environmental conditions may require special construction or rating
- Seismic requirements
- Altitude adjustments
- Ambient
- User and vendor need to agree on requirements

Substation

- Climate control of substations
- Chemical filtration where required by coupons tests
- Windowed door to allow radio communication and door safety

ANSI Mechanical Endurance

Line No.	Circuit Breaker Ratings			Number of Operations			
	Fixed Maximum Voltage MV, rms	Rated Continuous Current Amperes, rms	Rated Short- Circuit Current kA, rms	Between Servicing (2)	No-Load Mechanical (6)	Rated Continuous Current	Inrush Amps
	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7
	Indoor Circuit Breakers						
1	4.76, 15	1200, 2000	20, 25, 31.5	2000	10000	1000	750
2	4.76, 8.25,15	1200, 2000, 3000	40, 50	1000	5000	500	400
3	15	1200, 2000, 3000	63	500	5000	500	400
4	27	1200, 2000	16, 25	500	2500	200	100
5	38	1200, 2000, 3000	16, 25, 31.5, 40	250	1500	100	100
6	Outdoor Circuit Breakers						
	15.5 and above	All	All	500	2000	100	100

Mechanical Endurance Tests

Element	Test Point	Evaluation
Primary contacts \& Control contacts	500 cycles	Check alignment, penetration, and wear
Position interlocks	Every 50th cycle	Check function in withdrawn position
MOC \& TOC	Every 50th cycle	Check contact continuity in all positions
Shutters	Every 50th cycle	Check function in the withdrawn and connected positions

Through door racking of standard equipment

-Cannon Plugs added to the front of the switchgear - One control station used to open and close breakers

Closed Door Racking

How to Remote Rack a Circuit

Choosing an MV CB Service Conditions - Other

- Environmental conditions may require special construction or rating
- Seismic requirements
- Altitude adjustments
- Ambient temp

THE END MV SWGR

The End

MVMCC AR

MVMCC Arc Resistant

Main Bus Configuration

Fault location

- Line side of fuses

Equipment Damage

Adjacent Cell

Note while the section with the fault is a mess very little damage in the next cubicle

Arc Fault Test 50kA 5kV MCC

KEMA-POWVERTEST, INC.

4160Voltage Measurement Fault

- Results of using a 1000 V meter on 4160 V

4160 Voltage measurement fault

- PPE of the tech doing the measuremen t

Interrupting rating of Contactor

Contactor interrupting rating

- Set Time dial to
- Allow 0.3 to 0.4 sec of max ground fault current
- If coordinating with E2
 Contactor make sure time delay required for contactor rating included

Interrupting Capacity

Max. Interrupting Current (3 OPS.) Rated Current

Max. Rated Voltage
4500 Amps (SL-200)
8500 Amps (SL-400)
200 A Enclosed (SL-200)
400 A Enclosed (SL-400)
Making/Breaking Capacity 4000 amps
Short Time Current

30 Sec.
1 Sec.
8.7 MS (0.5 Cycle)

2400 A 6000 A
63kA Peak
$\left(1^{2}=5.89\right.$ mega-joules)

Medium Voltage Motor Control Center

- Grounded metal overall enclosure
- Bare bus
- Switching device is electrically operated contactor, stationary or drawout
- Line disconnect with door interlock
- Fuses provide short circuit protection. Separate overload \& ground fault

Medium Voltage Motor Control Center Ratings

- Max Voltage: 2500 V, 5000 V, 7200 V
- BIL: $45 \mathrm{kV}, 60 \mathrm{kV}, 60 \mathrm{kV}$
- Rated Continuous Current: 200 A, 400 A 700 A, 800A
- Rated Short Circuit Current: = Fuse Rating
- Rated Short Time Current: 15 x for 1 sec.

-Applications

- System configuration
- Motors
- Transformer Feeders
- Transfer Bus
- Capacitor Switching
- Generator Breakers

System Configuration

- Voltage levels / Load flow
- System grounding
- Reliability requirements
- Short Circuit
- Acceleration \& re-acceleration requirements
- BIL Co-ordination

Motors

- Contactor or Circuit Breaker
- Over load protection shall not exceed the Continuous Current by more than 15%
- Surge protection use on critical motors due to low BIL
- Problems with interruption of an inductive circuit (motor during Locked Rotor)

Choosing Medium Voltage Motor Controllers and MCC's

- Most of the information required is the same as is required for choosing metal-clad switchgear
- The basic ratings are the same as in metalclad switchgear: Voltage, current, frequency and service conditions
- Information about motors is required:
- Full load and locked rotor currents
- Acceleration time

Choosing Medium Voltage Motor Control Centers

- The ratings of medium voltage motor control centers = the ratings of the controller
- Main bus continuous current rating must be specified for the MVMCC
- No ratings given in applicable standards
- Typical ratings offered by manufacturers are $800 \mathrm{~A}, 1200 \mathrm{~A}, 2000 \mathrm{~A}$, and $2500 \mathrm{~A}, 3000 \mathrm{~A}$

Choosing MV Motor Controllers Voltage Ratings

- Rated insulation voltage must equal or exceed system voltage
- Standard ratings are 2500 V, 5000 V, and 7200 V.
- Other ratings may be available
- B.I.L. rating must coordinate with rest of system
- Standard includes List A and List B, based on exposure. List B is higher and is preferred
- B.I.L. ratings are 45 kV for 2001-3600 V and 60 kV for 3601-7200 V. Note variation from switchgear

Recommended Motor Voltage

 Withstand Values
IMPULSE
 VOLTAGE
 (PU)

Motor Surge Voltages

Operation	$\mathrm{V}(\mathrm{pu})$	Vacuum Breaker Probability	SF6 Breaker Probability
Closing	3	High	High
Opening a running motor	2	Very low	Very low
Opening a stalled motor	$4-5$	Medium / High	Low

Choosing MV Motor Controllers Continuous Current Ratings

- Full load current of motor should not exceed continuous current rating of controller.
- Standard enclosed ratings are $180 \mathrm{~A}, 360 \mathrm{~A}$, 630 A and 720 A
- Previous standard listed open ratings of 200 A , $400 \mathrm{~A}, 700 \mathrm{~A}$, and 800 A .
- Standard includes motor horsepower table for reference only

Choosing MV Motor Controllers

 Service-Limit Current Ratings- Service-limit current rating is 115% of continuous current rating of controller
- Ultimate-trip current rating of overload relays should not exceed service-limit current rating of controller
- Controller may have temperature rise exceeding test limits when operating at service-limit current

Choosing MV Motor Controllers

 Interrupting Current Ratings- E1 controllers depend on interrupting ability of contactor, which is very low $\sim 12 \mathrm{kA}$ max
- E2 controllers use current limiting fuses for interrupting faults
- Standard ratings are 40 kA and 50 kA rms
- E2 controllers usually use a fuse which has only short-circuit protective ability
- Fuse must be coordinated with over-load relay and contactor

MVMCC

Choosing MV Motor Controllers

 Service and Storage Conditions- Standard service and storage conditions are covered in standard ICS 1, Clause 6
- Considerations are very much like those for switchgear
- Minimum ambient temperature is 0 C
- Altitude limit is $1 \mathrm{~km}(3,300 \mathrm{ft})$ for equipment with power semiconductors
- Special conditions must be called to manufacturer's attention

Choosing MV Motor Controllers

Reduced-Voltage Starters

- Reduced-voltage starting methods control effect on the power system of starting a large motor
- Load flow and voltage drop studies determine need
- May use any one of several starting methods:
- Autotransformer is most common
- Reactor is second choice; resistor is rare

Choosing MV Motor Controllers

 Reduced-Voltage Starters- Reduced-voltage starters include two or three contactors as well as the required autotransformer or reactor.
- All of these items taken together make up one controller
- Only one set of fuses is required for a complete reduced-voltage starter
- Interlocking, both mechanical and electrical, prevents false operation

Choosing MV Motor Controllers Synchronous Motor Starters

- Basic features same as for an induction motor starter
- May be full-voltage or reduced-voltage
- A given size starter will usually handle a unity power factor synchronous motor larger than its induction motor or 0.8 pf synchronous motor size limit
- Otherwise, main difference is addition of field supply, excitation control and protection

Choosing MV Motor Controllers Loads Other Than Motors (1)

- Contactors can be used to switch transformers or other feeder loads
- Usually, fully-rated current limiting fuses are used rather than motor starting fuses
- Overload protection may be omitted
- May use latched contactor, which may be mechanically and/or electrically opened and/or closed

Choosing MV Motor Controllers

 Loads Other Than Motors (2)- Contactors, especially vacuum contactors, can be used to switch capacitors
- Transformer and capacitor switching ratings are not standardized. Contact manufacturer for information
- CAUTION! A latched contactor does not operate like a circuit breaker. It has no anti-pump feature and can fail if given close and trip signals together

The End

Clearance for switchgear NEC table 110.26A and 110.34A

Nominal volts to Ground	Clearance Condition 2	Clearance Condition 3
$0-150 \mathrm{~V}$	$.914 \mathrm{~m}-3^{\prime}$	$.914-3^{\prime}$
$151-600 \mathrm{~V}$	$1.07 \mathrm{~m}-3.5^{\prime}$	$1.2 \mathrm{~m}-4^{\prime}$
$601-2500 \mathrm{~V}$	$1.2 \mathrm{~m}-4^{\prime}$	$1.5 \mathrm{~m}-5^{\prime}$
$2501-9000 \mathrm{~V}$	$1.5 \mathrm{~m}-5^{\prime}$	$1.8 \mathrm{~m}-6^{\prime}$
$9001-25000 \mathrm{~V}$	$1.8 \mathrm{~m}-6^{\prime}$	$2.8 \mathrm{~m}-9^{\prime}$
$25,001-75 \mathrm{kV}$	$2.5 \mathrm{~m}-8^{\prime}$	$3.0 \mathrm{~m}-10^{\prime}$

Except. Working space not requires in back of switchgear or control assemblies where no renewable parts such as fuses or switches. (door swing or 30")

