Starting Large AC Motors

For

IEEE Houston Section - CED Seminar

By:

Roy Cosse, P.E. Robert Spiewak, P.E.

Presentation Code: 214

March 22-23, 2016

Synopsis:

Review induction and synchronous motor operation and effect on starting method selection. Equivalent circuit for start and operation. Reviews starting techniques for AC motors: directon-line, captive transformer, autotransformer, capacitor start, wye-delta, solid-state soft start, Adjustable Drive System (ASD), "pony driver" starting, and adjustable V/f isolated bus starting. Starting method selection (limited power and other restrictions).

Agenda

- Preliminaries
- Motor Fundamental
- Induction Motor Construction, basics, characteristics, and modeling
- Synchronous Motor Construction, basics, characteristics, and modeling
- Mechanical and Train Related Items
 Load characteristics, Inertia, Torque Consideration, Train
 Acceleration Time, Process Consideration, Protection Consideration
- Starting Techniques
 Induction and Synchronous Motor, Synchronous Motor Only, Special
- Calculations and Data Considerations

Preliminaries

During seminar, we will provide background and examples to answer following two questions:

How to start motor?

When motor is considered *large* for starting?

How to get data?

Something to think about...

Preliminaries
Condition 1:
Typical diesel engine with "standard" synchronous generator (SG) X'' , X'
Condition 2:
SG is Low Voltage Transient (LVT) type with "adjusted" X'

Motor Fundamentals

- Large motor definition
- Stator and Rotor Construction
- Insulation and Temperature Rise
- Mechanical/Torque Consideration
- Driver Selection IM/SM

- Small Machine (Fractional) in general for O&G, continues rating ≤ 1 Hp
- Medium Machine (Integral) in general for O&G, < 500Hp (n_s=3600,1800,1200rpm) etc.
- Large Machine Larger than Medium Machine size/synchronous speed

Temperature Rise	from 40°C								
	Method OF Temperature Determination	Temperature Rise [°C] Class of Insulation System							
Machine Part		A T _{max} =105		B T _{max} =130		F T _{max} =155		H T _{max} =180	
		SF=1.0	SF=1.15	SF=1.0	SF=1.15	SF=1.0	SF=1.15	SF=1.0	SF=1.1
Insulated Windings									
1. All power ratings	Resistance	60	70	80	90	105	115	125	135
2. 1500Hp or less	Embedded detector	70	80	90	100	115	125	140	150
3. Over 1500Hp (1120kW)									
3.a. ≤7000V	Embedded detector	65	75	85	95	110	120	135	145
3.b. >7000V	Embedded detector	60	70	80	90	105	115	125	135
Notes:									
 Embedded detectors are machines equipped with er The temperatures attain 	located within the slo mbedded detectors, th ed by cores, squirrel-c	ot of the m his method age windir	achine and I shall be u ngs, collect	d can be ei sed to der or rings. a	ither resist monstrate and miscella	ance elem conformit aneous pa	ents or the y with the rts (such a	ermocoup standard. s	les. For
brushholders and brushes,	etc.) shall not injure th	ne insulati	on or the n	nachine in	any respe	ct.			
3. For successful operation	of induction machine	s in ambie	nt tempera	atures hig	her than 40	0°C, the te	mperature	rises of t	he
machines given in above ta apply to TEWAC and TEAA(ble shall be reduced b C machines, see currer	y the num nt MG-1.	ber of deg	rees that t	the ambier	it tempera	ture excee	eds 40°C. I	Exception
 Table is based on assum winding temperature. 	ption that well design	ed motor,	the hot spo	ot temper	ature is api	roximately	/ 10°C high	ner than th	ne averag
E. Class A insulation is abor	loto No longer used								

Motor Fundamentals Code letters – Motor Inrush Characteristics				
A	0.3 15	Letter Designation	80.00	
B	3 15-3 55		9.0-10.0	
C	3 55-4 0	M	10 0-11 2	
D	4.0-4.5	N	11.2-12.5	
E	4.5-5.0	P	12.5-14.0	
F	5.0-5.6	R	14.0-16.0	
G	5.6-6.3	S	16.0-18.0	
н	6.3-7.1	т	18.0-20.0	
J	7.1-8.0	U	20.0-22.4	
	AM TANK STATUS		00.4	

Code letters

In general it is accepted that small motors requires higher starting kVA than larger motors. Standard 3PH motors often have these locked rotor codes:

- <1 Hp: Locked Rotor Code L, 9.0-9.99 kVA
- 1 2 Hp: Locked Rotor Code L or M, 9.0-11.19
- 3 Hp : Locked Rotor Code K, 8.0-8.99
- 5 Hp : Locked Rotor Code J, 7.1-7.99
- 7.5 10 Hp : Locked Rotor Code H, 6.3-7.09
- >15 Hp : Locked Rotor Code G, 5.6-6.29

Design Type

NEMA design A

- o maximum 5% slip
- o high to medium starting current
- o normal starting torque (150-170% of rated)
- o normal locked rotor torque
- o high breakdown torque
- o suited for a broad variety of applications as fans and pumps

• NEMA design B

- o maximum 5% slip
- o low starting current
- o high locked rotor torque
- o normal breakdown torque
- o suited for a broad variety of applications, normal starting torque common in HVAC application with fans, blowers and pumps

Motor Fundamentals	i
 Design Type 	-
 NEMA design C maximum 5% slip low starting current high locked rotor torque normal breakdown torque can't sustain overload as design A or B suited for equipment with high inertia starts - as positive displacement pumps 	
 NEMA design D maximum 5-13% slip low starting current very high locked rotor torque Usually special order suited for equipment with very high inertia starts - as cranes, hoists etc. 	i

lication
d mashina taala
d machina taala
lu machine tools
nps, unloaded metal niscellaneous
s, fly wheels, mps, compressors
ded starts. Choose cation forming machine
5
and oil well
e (a function of th

Type of Torques (Both IM and SM)

Locked Rotor or Starting or Breakaway Torque (Static Torque)

Lock Rotor or Starting Torque (LRT) is the minimum torque the electrical motor will develop at rest for all angular positions of the rotor, with rated voltage applied at rated frequency

Pull-up Torque

The pull-up torque of an alternating-current motor is the minimum torque developed by the motor during the period of acceleration from rest to the speed at which breakdown torque occurs. For motors which do not have a definite breakdown torque, the pull-up torque is the minimum torque developed up to rated speed.

Break-down Torque

The breakdown torque of a motor is the maximum torque which it will develop with rated voltage applied at rated frequency, without an abrupt drop in speed.

Full-load Torque or Braking Torque

The full-load torque (FLT) of a motor is the torque necessary to produce its rated horsepower at full-load speed. In pounds at a foot radius, it is equal to the horsepower times 5252 divided by the full-load speed.

Motor Fundamentals

Type of Torques (Only SM)

Pull-Out Torque

The pull-out torque of a synchronous motor is the maximum sustained torque which the motor will develop at synchronous speed with rated voltage applied at rated frequency and with normal excitation

Pull-In Torque

The pull-up torque of an alternating-current motor is the minimum torque developed by the motor during the period of acceleration from rest to the speed at which breakdown torque occurs. For motors which do not have a definite breakdown torque, the pull-up torque is the minimum torque developed up to rated speed.

		ed; do not have to be
<u>ecified)</u> , with e not less than	the following	and frequency applied, shall
	Torques	Percent of Rated Full-Load Torrue
	Locked-rotor*	60
	Pull-up*	60
	Breakdown*	175
	Pushover**	175
*Applies specified	to squirrel-cage induction me for self-starting	otors or induction generators when
** Appliq	s to squirrel-cage induction g	enerators
Applies		
Арріе		
ne high torgu	e (when spec	cified), with rated voltage and
ne <u>high torqu</u>	e (when spec	<u>cified),</u> with rated voltage and ot less than the following:
ne <u>high torqu</u> equency applie	e (when spec ed, shall be n	<u>cified),</u> with rated voltage and ot less than the following:
e <u>high torqu</u> equency applie	e (when speced, shall be n	<u>cified),</u> with rated voltage and ot less than the following: Percent of Rated Full-load Torque
e <u>high torqu</u> quency applie 	e (when spec ed, shall be n Torques	<u>cified),</u> with rated voltage and ot less than the following: Percent of Rated Full-load Torque 200
e <u>high torqu</u> juency applie	e (when spec ed, shall be n Torques Locked-rotor Pull-up	cified), with rated voltage and ot less than the following: Percent of Rated Full-load Torque 200 150

Motor Fundamentals
The custom load curve (when specified), with rated voltage and frequency applied, may be lower than Normal and High Torque requirements, but the motor developed torque exceeds the load torque by a minimum of 10% of the rated full-load torque and any speed up to that at breakdown torque occurs.
<u>Note:</u> Since the torque developed by the induction machine at any speed is approximately proportional to the square of the voltage and inversely proportional to the square of the frequency it is desirable to determine what voltage and frequency variations will actually occur at each installation, taking into account any voltage drop resulting from the starting current drawn by the machine. This information and the torque requirements of the driven (or driving) machine define the machine speed-torque curve, at rated voltage and frequency, which is adequate for the application.
<u>Note:</u> A torque margin of lower than 10% is subject to individual agreements between manufacturer and user.

For <u>"Low Inrush Motors"</u> i.e. motors with 4.5 pu and lower lock-rotor current above values do not apply. Break down torque shall be not less than 150% of rated full-load torque, and break away torque and pull-up torque do not have any restrictions.

 Operation of IM from Variable – Frequency or Variable-Voltage power supplies, or both

Induction machines to be operated from solid-state or other types of variable-frequency or variable-voltage power supplies, or both, for adjustable-speed applications may require individual consideration to provide satisfactory performance. Especially for operation below rated speed, it may be necessary to reduce the machine nameplate rating to avoid overheating. The *induction machine manufacturer should be consulted before selecting a machine for such applications!*

Induction Motor Basics, type characteristics, load characteristics, and modeling Motor modeling General construction and Cooling Induction motor - General data, principle of operation and nameplate information describing motor Motor types and characteristics, application consideration Equivalent motor parameters Other consideration

Induction Motor

After Arbitrary Reference Frame Transform

 $\begin{cases} u_{qs} = r_s i_{qs} + \frac{d}{dt} \lambda_{qs} + \omega \lambda_{ds} \\ u_{ds} = r_s i_{ds} + \frac{d}{dt} \lambda_{ds} - \omega \lambda_{ds} \\ u_{0s} = r_s i_{0s} + \frac{d}{dt} \lambda_{0s} \\ u_{0r} = r_r i_{0r} + \frac{d}{dt} \lambda_{qr} + (\omega - \omega_r) \lambda'_{dr} \\ u'_{dr} = r_r i'_{dr} + \frac{d}{dt} \lambda'_{dr} - (\omega - \omega_r) \lambda'_{qr} \\ u'_{dr} = r_r i'_{0r} + \frac{d}{dt} \lambda'_{0r} \\ T_{em} (i_s^{ad0}, i_r^{ad0}) = \frac{3}{22} (\lambda_{ds} i_{qs} - \lambda_{qs} i_{ds}) \\ \begin{bmatrix} \lambda_{qs} \\ \lambda_{ds} \\ \lambda_{ds} \\ \lambda'_{qr} \\ \lambda'_{dr} \end{bmatrix} = \begin{bmatrix} L_{1s} + L_m & 0 & 0 & L_m & 0 & 0 \\ 0 & L_{1s} + L_m & 0 & 0 & L_m & 0 \\ 0 & L_{1s} + L_m & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ L_m & 0 & 0 & L'_{1r} + L_m & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ T_{mech} (\omega) = a_0 + a_1 \omega + a_2 \omega^2 + \dots + a_n \omega^n \\ J \frac{d^2 \omega}{dt^2} + k_d \frac{d\omega}{dt} = T_{em} (i_s^{ad0}, i_r^{ad0}) - T_{mech} (\omega) - T_{Loss} - B_r \omega \end{cases}$

Induction Motor General data 🕈 АВВ 🔂 🗉 з с СЕ ABB OY đ Type HXR 500LP14 Year 2002 Phases Duty S1 Connection D 4570787 470 3300 3~ utput oltage tion 7100 Power factor 0.59 411 1001 EEx nA II T3, EN 50021 VTT 03 ATEX 011X - IEC 60034-1 ± 0 0 6 0 REALES BUILDED 1049 (B

eneral data	
* ABB ABB ABB OY	ABB 0y +
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tope Avan Association Associa
DA1 6.83 6.83 6.83 INVERTINE PARAMETER STITUE 1899.5 rpm / 475 Å/ 1 1 255 KW / 690 V / 452 Hz / 899.5 rpm / 475 Å/ 1 1 1 053 FK / 100 V / 452 Hz / 899.5 rpm / 475 Å/ 1 1 1 004RE0A0 Hz / 10 min 1 1 1 1 1 950 - 900 - 980 rpm 10 min 1 1 1 1 1 820 - 820 - 910 A 4 4 4 4 4 1	CODE F. Armo. 40°C.

	Synchronous Motor
 Park's Transform 	
$\mathbf{T} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos\varphi & \cos(\varphi - 120^{\circ}) \\ -\sin\varphi & -\sin(\varphi - 120^{\circ}) \end{bmatrix} - u_{d} = R_{s}i_{d} + \frac{d}{dt}\psi_{d} - u_{d} = R_{s}i_{d} + \frac{d}{dt}\psi_{d}$	$\frac{1}{\sqrt{2}} \cos(\varphi - 240^{\circ})$ $\sin(\varphi - 240^{\circ})$
$u_f = R_f i_f + \frac{\mathrm{d}}{\mathrm{d}t} v$	lr
$J\frac{d^2m}{dt^2} + k_d d\frac{\varphi}{dt} = T_e$	+ T _m
$T_e = \Psi_d i_q - \Psi_q i_d$	

Synchronous Motor

General data

- Motor electro-mechanical characteristics are described by:
 - Nominal Voltage
 - Nominal frequency
 - Nominal Current
 - Number of phases
 - Number of poles
 - Design class
 - Code letter
 - Moment of inertia
 - All others (rated power factor, efficiency, excitation current etc.)

Mechanical Load And Train System

Compressors, teclp/coding, start unicated 100 300 100 Conveyors, screw (loaded) 150 130 100 Conveyors, screw (loaded) 175 100 100 Conveyors, screw (loaded) 175 100 100 Conveyors, schert/tigal, anker-type (vibrating) 150 150 75 Fans, centrifugal, anbient:	Compressors, help(locating, said unicated) 100 30 100 Conveyors, belf (located) 150 130 100 Conveyors, screw (loaded) 175 100 100 Conveyors, screw (loaded) 175 100 100 Conveyors, screw (loaded) 175 100 100 Conveyors, screw (loaded) 150 75 Fans, centrifugal, ambient: 150 150 75 Valve open 25 110 100 Fans, centrifugal, hot: 150 175 175 Fans, contrifugal, scit-fange 25 60 100 Valve open 25 200 175 Fans, propeller, axial-flow 40 110 100 Mixers, slurry 150 125 100 Pumps, adjustable-blade, vertical 150 200 200 Pumps, oil-field, flywheel 40 150 150 Pumps, oil-field, flywheel 40 150 150 Pumps, oil-field, flywheel 40 <t< th=""><th>Application Blowers, centrifugal: Valve closed Valve open Blowers, positive displacement, rotary, bypass Centrifuges Compressors, axial-vane, baded</th><th>Load 1 Per Breakaway 30 40 40 40 40</th><th>Accelerating 50 110 40 60 100 50</th><th>Alimum Jue Peak Running 40 100 100 125 100 100</th></t<>	Application Blowers, centrifugal: Valve closed Valve open Blowers, positive displacement, rotary, bypass Centrifuges Compressors, axial-vane, baded	Load 1 Per Breakaway 30 40 40 40 40	Accelerating 50 110 40 60 100 50	Alimum Jue Peak Running 40 100 100 125 100 100
Valve closed 25 60 50 Valve closed 25 110 100 Fans, centrifugal, hot: Valve closed 25 60 100 Valve closed 25 200 175 Fans, propeller, axial-flow 40 110 100 Mixers, chemical 175 75 100 Mixers, optimical 150 125 100 Pumps, adjustable-blade, vertical 160 200 200 Pumps, oil-field, flywheel 40 150 150 Pumps, oil-field, flywheel 40 150 150	Valve closed 25 60 50 Valve open 25 110 100 Fans, centrifugal, hot:	Compressors, reciprocating, start unloaded Conveyors, belt (loaded) Conveyors, screw (loaded) Conveyors, shaker-type (vibrating) Fans, centrifugal, ambient:	100 150 175 150	50 130 100 150	100 100 100 75
Fans, propeller, axial-flow 40 110 100 Mixers, chemical 175 75 100 Mixers, slurry 150 125 100 Pumps, adjustable-blade, vertical 150 200 200 Pumps, odjustable-blade, vertical 150 150 150 Pumps, odi-field, flywheel 40 150 150 Pumps, oil-field, flywheel 40 150 150 Pumps, oil, fuel 40 150 150 Pumps, oil, fuel 40 150 150 Pumps, oil, fuel 40 150 150	Fans, propeller, axial-flow 40 110 100 Mixers, chemical 175 75 100 Mixers, slurry 150 125 100 Pumps, aljustable-blade, vertical 150 200 200 Pumps, centrflugal, discharge open 40 150 150 Pumps, oil, labricating 40 150 150 Pumps, oil, labricating 40 150 150 Pumps, propeller 40 150 150 Pumps, propeller 40 100 100 Pumps, reciprocating, positive displacement 40 100 100 Pumps, screw-type, primed, discharge open 150 100 100 Pumps, slurry-handling, discharge open 150 100 100 Pumps, ultruhe, centrifugal, deep-well 50 100 100	Valve closed Valve open Fans, centrifugal, hot: Valve closed Valve open	25 25 25 25 25	60 110 60 200	50 100 100 175
Pumps, oil-field, flywheel 40 150 150 Pumps, oil, lubricating 40 150 150 Pumps, oil, fuel 40 150 150 Pumps, oil, fuel 40 150 150 Pumps, oil, fuel 40 150 150	Pumps, oil-field, flywheel 40 150 150 Pumps, oil, fuel 40 150 150 Pumps, oil, fuel 40 150 150 Pumps, oil, fuel 40 150 150 Pumps, propeller 40 100 100 Pumps, reciprocating, positive displacement 175 30 175 Pumps, screw-type, primed, discharge open 150 100 100 Pumps, siurry-handling, discharge open 150 100 100 Pumps, urbrie, centrikugal, deep-well 50 100 100	Fans, propeller, axial-flow Mixers, chemical Mixers, slurry Pumps, adjustable-blade, vertical Pumps, centrifugal, discharge open	40 175 150 150 40	110 75 125 200 150	100 100 100 200 150
runps, properier 40 100 100	Pumps, reciprocating, positive displacement 175 30 175 Pumps, screw-type, primed, discharge open 150 100 100 Pumps, slurry-handling, discharge open 150 100 100 Pumps, turbine, centrifugal, deep-well 50 100 100	Pumps, oil-field, flwheel Pumps, oil, lubricating Pumps, oil, fuel Pumps, propeller	40 40 40 40 40	150 150 150 150 100	150 150 150 150

Inertia

Inertia

$$J_{z} = \sum_{i=1}^{w} J_{i} \left(\frac{n_{i}}{n_{1}}\right)^{2} + \sum_{i=1}^{p} m_{i} \left(\frac{v_{i}}{n_{1}}\right)^{2}$$

w - numer rotating elements p - number linera motion elements

Tab	lo Motore Star	ting Mothod	c / Comparie	on									
Item	Train Starting Method	Stiff	Weak Network	Load with High Breakaway	High Torsional Stresses Not Allowed - East	System	Locke Line	d Rotor Voltage	Maxi Value	mum Duratio	Cost	Motor Starts Per	Notes
				Troque	Acceleration		[pu]	[pu]	[pu]	[sec]		Hour	
1	FVNR/DOL	Prefered, if voltage drop excessive use	Results in unaceptable	Prefereable; otherwise use			6.0	0.8	6.0	3 - 10	10	1-2	
		2,3,7,8	voltage drop	4, 5, 6	Not recomended								
2	Reactor / Resitor Start	Only is FVNR is not acceptable	Evaluate; if negative use 4, 5, 6	Not recommended	Prefered		3.5	.85	3.5	5 - 12	16	1-2	0.70 Tap
3	RVAT	Only is FVNR is	Evaluate; if negative use 4, 5,	Not	Preferred		2.5	0.9	2.5	5 - 12	14	1-2	0.70 Tap
4	Shunt Capacitor	Not recomended	Prefered on cost	Capacitors used as network support may allow a FVNR start	Not recommended	Resonance, back-to-back switching, overexcitation/ stability	22	0.89	4.5	1-2	2.5	1-2	50 %kVAR Correction
5	Wound Rotor	If soft start	Guarapleed start	No problems, guaranteed start	Preferred		10	0.97	3.0	1-2	2.0	1-2	100% LRT limit
6	Pany Motor	Not recomended	Use if capacitor start is unsucesfull	ND starting problem for unloaded driven egp.	Not recommended		12	0.96	2.0	10-300	18	Multiple	
7	RVSS	If soft start	Evaluate; if negative use 4, 5, 6	Not recommended	Preferred		3.5	0.8	3-5	10-30	14	1-2	l(limit)=250%
8	Captive Transfromer	If voltage drop in the utility network needs to be minimized	Evaluate; if negative use 4, 5, 6	Not recommended	Use if voltage stepdown function is required								
9	Frequency/Voltage Strt PWM ASD	If soft start required	Guaranteed start	No problems, guaranteed start	Prefered	SSR, Resonance	13	0.98	2.0	10-30	2-5	Multiple	24-48 pules
10	Frequency/Voltage Strt LCI ASD	If soft start	Guaranteed start	No problems, guaranteed start	Prefered	SSR, Resonance	13	0.98	2.0	10-30	2-5	Multiple	
11	Frequency/Voltage Strt Isolated Bus	lf soft start		No problems, guaranteed		Special							Wf=const, Special Consideratio
	Isoraleu Dus	required	Guaranteed start	start	Prefered								

- Variable Generator / Isolated Bus Motor Starting
 - Principle: use turbine/engine together with generator as a "VFD" starter.

Starting Large AC Motors Day 2

For

IEEE Houston Section - CED Seminar

By:

Roy Cosse, P.E. Robert Spiewak, P.E.

Presentation Code: 214

March 22-23, 2016

	Motor Starting
 Typical Application – Cont. 	
 Condition 1 (TMS) 	
o Large IM start only, no other loads	
o (3) GTGs On-Line	
 Condition 2 (TMS) 	
o Large IM start only, no other loads	
o (2) GTGs On-Line	
 Condition 3 (TMS) 	
o Large IM start only with other loads	
o (2) GTGs On-Line	
 Condition 4 (TMS/ISIM) 	
o Motor inrush 6x FLA	
o Motor inrush 3x FLA	

Comparison -System Element Models vs. Calculation Method

Power System	TS - Transient Stability	Dynamic Motor Acceleration	Static Motor Acceleration	Notor	
Elements	ISIM - Industrial Simulation	TMS - Transient Motor Starting			
- ·		Constant Voltage	Constant Voltage		
Generator	Dynamic Model	Behind Xd'	Behind Xd'		
Exciter/ Governor	Dynamic Model	Not Modeled	Not Modeled		
Utility Grid/	Constant Voltage	Constant Voltage	Constant Voltage		
Interties	Behind X", or X'	Behind X", or X'	Behind X", or X'		
	Dynamic Model or	Constant IN/A	Constanting		
Running Motors	Constant kVA	Constant KVA	Constant KVA		
(>0.90xRPMn)	Single Brach, Double Branch, or	Single Brach, Double Branch, or	Single Brach, Double Branch, or		
	Block Diagram	Block Diagram	Block Diagram		
	Single1, Single2, DBL1, & DBL@	Single1, Single2, DBL1, & DBL@	Locked-Rotor Z and		
Starting Mators	Models	Models	Power Factor		
Starting Motors	Single Brach, Double Branch, or	Single Brach, Double Branch, or	Single Brach, Double Branch, or		
	Block Diagram	Block Diagram	Block Diagram		
Starters & Control	Not Modeled	Madalad	Madalad		
Models	Modeled	Wodeled	Widdeled		

Special Consideration

Harmonic Flux

Special Consideration

Harmonic Torques
Special Consideration

Typical Slot Design

Special Consideration

Typical Slot Design

Special Consideration

- Others:
 - Number of starts (or restarts)
 - · Process special requirements vs. thermal lockout
 - · System stability
 - System harmonic resonances
 - System sub-synchronous resonance

Calculations, Data, Simulation, Applications

Calculations, Simulation, Applications

Software

- ETAP, SKM/PTW
 - Sufficient for DOL starting and reduce voltage discrete calculations; not applicable for RVSS starters analysis
- SPICE, MATLAB, EMTP-ATP
 - Applicable for motor starting analysis with control loops considerations, can predict waveforms and effect on power system
- Custom Software
 - Write own software utilizing Compilers or high level language (i.e. Matlab)
- Hand Calculations
 - Utilize MathCad or other mathematical analysis package; must understand electrometrical theory

Calculations, Simulation, ApplicationsEquivalent Schematic Parameters – CalculationsNominal Parameters $I_n := \frac{P_n}{n_n \sqrt{3} \cdot U_n \cdot PF_n}$ $I_n = 154.79A$ $T_n := \frac{P_n}{\frac{\pi n_n}{30}}$ $T_n = 4778.38N \cdot m$ $T_n = 3524.36ft \cdot lbf$ $\omega_s := \frac{2 \cdot \pi \cdot f_s}{p}$ $n_s := \frac{60 \cdot f_s}{p}$ $\omega_s = 188.5s^{-1}$ $n_s = 1800RPM$ $s_n := \frac{n_s - n_n}{n_n}$ $s_n = 0.0061$ $Z_z := \frac{U_n}{\sqrt{3} \cdot i_r \cdot I_n}$ $Z_z = 2.98\Omega$

Ca	Calculations, Simulation, Applications								
Equivalent S	Equivalent Schematic Parameters – Calculations								
$\mathbf{R}_{\mathrm{s}} := \mathbf{R}_{\mathrm{z}} \cdot \frac{5}{10}$	$R_s = 0.35\Omega$								
$X_s := X_z \cdot \frac{5}{10}$	$X_{\rm s} = 1.45\Omega$								
$R'_r := R_s$	$X'_r := X_s$								
$\Delta P_n := P_n \cdot \frac{1-\eta_n}{\eta_n}$	$\Delta P_n = 37.79 kW$								
$\Delta P u_n := \frac{3}{2} \cdot {I_n}^2 \cdot R_z$	$\Delta P u_n = 25.22 kW$								
$\Delta P_m := 0.01 P_n$	$\Delta P_{\rm m} = 8.952 {\rm kW}$								
$\Delta P_{fen} := \Delta P_n - \Delta P u_n - \Delta P_m$	$\Delta P_{fen} = 3.61 kW$								
$R_{fe} := \frac{U_n^2}{\Delta P_{fen}}$	$R_{fc} = 4426.97\Omega$								
$I_{fe} := \frac{U_n}{\sqrt{3} \cdot R_{fe}}$	$I_{fc} = 0.52 \Lambda$								
$I_0 := 20\% \cdot I_n$	$I_0 = 30.96A$								
$I_{m} := \sqrt{{I_{0}}^{2} - {I_{fe}}^{2}}$	$I_{\rm m} = 30.95 A$								
$X_m := \frac{U_n}{\sqrt{3} \cdot I_m}$	$X_m = 74.61\Omega$								

Calculations, Simulation, Applications

Equivalent Schematic Parameters - Calculations

Equivalent	Form F-3 Method F: Solution of Equivalent Circuit									
Schematic	Model No Model No Typa Homepower Voltage, Synchronous Speed Prequency t Before starting calculations, fill in following items, obtained from previous tests.						m=Phates			
Parameters –	$\tau_1 = _$ T_2 + phase toils $_$ I_2 and I_2 and I_2 $_$ from Porm T_2 also all the items below which are marked with an asteriation of the orbit of the start of proportional values for which Assume a values of a corresponding to arguested following start of the bolos. Numbers at () regressed into a number loads T for marked possibilities a μ positive, and a divide marked which bolos. Numbers at () regressed in the number									
	Item Description	1	2	3	4	5	6	7	8	
	1 s-alip, per unit					· · ·		-		
	* 3 x	-			- · ·	-				
	4 Z ³ = (2) ² + (3) ²							-		
	5 g ₂ = (2)/(4)	_						L		
	7 g = (5) + (6)	-								
	8 - 6 = (3)/(4)	_								
	$*9 - b_{M} =$ 10 - b = (8) + (9)								-	
	$11 Y^{1} = (7)^{2} + (10)^{4}$									
	12 rg = (7)/(11)	_								
	*13 r = resistance per phase						-		-	
	$15 x_g = (10)/(11)$			-				-		
	*16 5 =									
	17 = (15) + (16) $18 = \sqrt{(147 + (177))}$					-	+	-		
	19 J = V/(18)									
	20 $t_i = t_i / \sqrt{(4) \cdot (11)}$						-			
	22 Sec. Input = m * (19)* * (14) 22 Sec. Input = m * (20)* * (2)									
	23 Stator PR = m - (19)2 - (13)									
	24 Core Loss - m • (19) ¹ • (6)/(11)	_		_					<u> </u>	
	26 Friction and Windage Loss									
	27 $W_{LL} = W_{LL} \cdot [(20)/l_t]^2$									
	28 Losses-Itents (23) through (27)			_	_	_		_	-	
	30 Eff. (%)=100 · [1 · (28)/(21)]	-							-	
	31 PF (%)=100 · (14)/(18)			_						
	32 hp Output = (29)/746		_	_			ļ			
	34 [Torener Ker + (29)/(33)			_			+	-	<u> </u>	

Questions?

$$IOOMVA BASE$$

$$Z_{II} = \frac{100MVA_{BASE}}{4000MVA} \implies 0.025 \text{ puZ}$$

$$T_{I} = \frac{100MVA_{BASE}}{10\%7}$$

$$Z_{TI} = \frac{0.1\times0.1}{0.1+0.1}$$

$$= 0.05 \text{ puZ}$$

$$AT 25 \text{ MVA}$$

$$Z_{M} = \frac{FLA}{LRA}$$

$$= \frac{1}{6} = 0.167 \text{ puZ}$$

$$AT 9.210 \text{ mVA BASE}$$

$$I.813 \text{ puZ}$$

$$2.038 \text{ puZ}$$

$$MVA = 10 \text{ KHP } \times 0.746 \frac{EW}{HP}$$

,

= 9.210 MVA

•

1.813 × 100 = 88.96% V 2.038

$$Z_{II} = \frac{100 \text{ mvA}_{BASE}}{N000 \text{ mvA}}$$

$$Z_{II} = \frac{100 \text{ mvA}_{BASE}}{N000 \text{ mvA}}$$

$$0,025 \text{ pvZ}$$

$$0,025 \text{ pvZ}$$

$$0,025 \text{ pvZ}$$

$$0,025 \text{ pvZ}$$

$$0,000 \text{ pvZ}$$

$$10\% \text{ Z}_{TI} = 0.10 \text{ pvZ}$$

$$AT \text{ ZSMVA}$$

$$BASE$$

$$Z_{M} = \frac{FLA}{LRA}$$

$$= \frac{1}{6} = 0.167 \text{ pvZ}$$

$$AT 9.210 \text{ mvA}$$

$$BASE$$

$$\frac{1.813 \text{ pvZ}}{2.38 \text{ pvZ}}$$

$$\frac{1.813 \text{ pvZ}}{2.38 \text{ pvZ}}$$

,

= 9.210 MVA

.

$$IOO MVA BASE$$

$$Z_{II} = \frac{100 MVA_{BASE}}{1000 MVA}$$

$$D,100 po2$$

$$T_{I} = \frac{1}{1000 MVA}$$

$$Z_{TI} = 5\%$$

$$IO_{0}Z = 0.200 pu2$$

$$25MWA_{BASE} = 0.200 pu2$$

$$Z_{TI} = \frac{FLA}{LRA}$$

$$= \frac{1}{L} = 0.167 pu2$$

$$A.210MVA_{BASE} = 2.113 pu2$$

$$MVA = 10KHP \times 0.74L \frac{Ew}{HP}$$

$$0.9PF \times 0.9 EFF$$

$$= 9.210 MVA$$

.

VOLTAGE AT MOTOR TERMINALS
(VOLTAGE DIVIDER)

$$\frac{1.813}{2.113} \times 100 = 85.80\%$$

	100 m VA BASE						
$Z_{\rm H} = \frac{100 \text{MVA BASE}}{1000 \text{MVASE}}$	0,100 pu 2	4					
TI ZSMYA ZSMYA ZTI = 0.10 pJZ ZTI = 25MYA	0,400 PV	Y Y					
$Z_{M} = \frac{FLA}{LRA}$ $= \frac{1}{6} = 0.167 \text{ pu}Z$ $q.210 \text{ myA}$ $MVA = 10 \text{ KHP} \times 0.746 \frac{\text{KW}}{\text{Hp}}$ $0.9 \text{ PF} \times 0.9 \text{ EFF}$	1,813 put 2.313 pu	2					

= 9,210 MVA

VOLTAGE AT MOTOR TERMINALS
(VOLTAGE DIVIDER)
$$\frac{1.813}{2.313} \times 100 = 78.38\%$$

100 MVA BASE

$$Z_{II} = \frac{100 \text{ MVA}}{4000 \text{ MVA}_{Se}} \qquad 0.025 \text{ puZ}$$

$$Z_{II} = \frac{100 \text{ MVA}}{4000 \text{ MVA}_{Se}} \qquad 0.025 \text{ puZ}$$

$$Z_{II} = \frac{100 \text{ Z}}{100 \text{ Z}} = T2 \text{ OUT OF SERVICE} \qquad 0.400 \text{ puZ}$$

$$Z_{II} = \frac{7.5 \text{ MVA}}{100 \text{ Z}} \qquad 1.000 \text{ puZ}$$

$$Z_{II} = \frac{1}{6} = 0.167 \text{ puZ} \qquad 1.813 \text{ puZ}$$

$$Z_{II} = \frac{1}{6} = 0.167 \text{ puZ} \qquad 3.238 \text{ puZ}$$

$$MVA = 9.210 \text{ MVA}$$

$$(SEE PREVIOUS CALC)$$

۰.

.

VOLTAGE AT MOTOR TERMINALS
(VOLTAGE DIVIDER)
$$\frac{10813}{3,238} \times 100 = 55.9990V$$

$$\frac{100 \text{ MVA BASE}}{0.100 \text{ puZ}}$$

$$Z_{II} = \frac{100 \text{ mVA BASE}}{1000 \text{ mVA}}$$

$$0.100 \text{ puZ}$$

$$25 \text{ mVA}$$

$$TI = \frac{100 \text{ K}}{100 \text{ K}} = T2 \text{ OUTOF SERVICS}$$

$$0.400 \text{ puZ}$$

$$Z_{II} = \frac{7.5 \text{ mVA}}{7.5 \text{ mVA}} = \frac{100 \text{ mVA}}{7.5 \text{ mVA}} \times 0.075 \text{ I.000 puZ}$$

$$Z_{II} = \frac{1}{6} = 0.167 \text{ puZ}$$

$$\frac{1.813 \text{ puZ}}{3.313 \text{ puZ}}$$

$$\frac{1.813 \text{ puZ}}{3.313 \text{ puZ}}$$

$$\frac{1.813 \text{ puZ}}{3.313 \text{ puZ}}$$

• .

.

MOTOR STARTING - CAPTIVE XFMIL LITILITY 1000 MVASE TI ONLINE, T2 OUT OF SERVICE

37, JMVA BASE

$$\frac{30000}{0.89F} = 37.5 \text{ MVA}$$

$$\frac{30000}{0.89F} = 37.5 \text{ MVA}$$

$$\frac{3}{0.89F} = 25\% \text{ For } 1\text{ GEN}$$
Fold $3\text{ GEN'S} 25\%/5$

$$\frac{7}{210000HP} = 0.167\text{ pu?}$$

$$\frac{0.6780}{9.210 \text{ MVA}}$$

$$\frac{0.6780}{9.210 \text{ MVA}}$$

$$\frac{0.6780}{9.210 \text{ MVA}}$$

$$\frac{0.7613}{90?}$$

$$\frac{0.678}{0.7613} \times 10^{\circ} = 89.06\% \text{ V}$$

$$\frac{0.678}{0.803} \text{ pu?}$$

$$\frac{0.678}{0.928} \text{ pu?}$$

$$\frac{$$

$$\frac{37.5 \text{ MVA BASE}}{37.5 \text{ MVA BASE}}$$

$$\frac{37.5 \text{ MVA BASE}}{37.5 \text{ MVA}}$$

$$\frac{37.5 \text{ MVA}}{37.5 \text{ MVA}}$$

$$\frac{37.5 \text{ MVA BASE}}{37.5 \text{ MVA}}$$

$$\frac{37.5 \text{ MVA BASE}}{57.5 \text{ MVA}}$$

$$\frac{1.3558}{7.5 \text{ MVA}}$$

$$\frac{1.3558}{7.5 \text{ MVA}}$$

$$\frac{37.5 \text{ MVA BASE}}{1.4391}$$

$$\frac{1.3558}{7.3558}$$

$$\frac{1.3558}{7.3558}$$

$$\frac{0.2500}{7.3558}$$

$$\frac{1.3558}{7.3558}$$

$$\frac{0.2500}{7.3558}$$

$$\frac{1.3558}{7.3558}$$

$$\frac{0.2500}{7.3558}$$

$$\frac{1.3558}{7.3558}$$

VIB. 8KN BUS = 1.6058 × 100 = 84.43% V

250 KVA BASE

$$V_{A} = 33\%$$

$$V_{A} = 75\%$$

$$V_{A} = 6\%$$

$$V_{A} = 75\%$$

$$V_{A} = 75\%$$

$$V_{A} = 75\%$$

$$V_{A} = 75\%$$

$$V_{A} = 17\%$$

$$V_{A} = 10\%$$

$$V_{A} = 10\%$$