

POWERMAX® ['pou (ə)r 'maks] *noun:* a system designed to maintain stability

Niraj Shah SPS Branch of SEL Engineering Services Inc.

Agenda

- POWERMAX Power Management System Introduction
- POWERMAX Functionalities (IDDS, LSP, GCS, A25A)
- POWERMAX Simulators
- MOTORMAX LV Motor Management System Introduction

Agenda

- POWERMAX Power Management System Introduction
- POWERMAX Functionalities (IDDS, LSP, GCS, A25A)
- POWERMAX Simulators
- MOTORMAX LV Motor Management System Introduction

What Is POWERMAX?

POWERMAX Operation

POWERMAX Applications and Goals

Controller Provides Many Features

All High-Priority Controller Tasks Must Execute Each Operating Cycle

Calculate Actions

Fast and Scalable Architectures Are Required

Redundancy

All dual systems can be hot, standby, or dual primary

Agenda

- POWERMAX Power Management System Introduction
- POWERMAX Functionalities (LSP)
- POWERMAX Simulators
- MOTORMAX LV Motor Management System Introduction

POWERMAX Functions

High-Speed Load Shedding Objectives

- Power system frequency stability
 - Shed the correct amount of load
 - Quickly shed load
- Process survivability
 - Intelligently select loads that minimize the effect on the production process

SEL Load Shedding Features

- Subcycle speed
- Dual primary mechanism
- Primary CLSP
- Backup UFLSP / ICLT

- Asset overload shedding
- Multiple simultaneous contingencies
- SOEs and event records
- Backup Web HMI

Contingency Load Shedding

- System contingencies
 - Tie line
 - Bus tie
 - Generator breaker
 - Turbine trip
 - Asset overload

- Primary load shedding
- Blackout prevention
- Fastest independent
- Decision based on topology, contingency and load calculations

Contingency Breaker Opening Is Determined by 52A and 52B Limit Switches

Contingency-Based Load-Shedding System

Required to Shed (kW)

$$L_n = P_n - \sum_{g=1}^m IRM_{ng}$$

n = contingency (event) number

m = number of sources (generators) in system

g = generator number, 1 through m

 L_n = amount of load selected for *n* event (kW)

 P_n = power disparity caused by *n* event (kW)

 IRM_{ng} = incremental reserve margin of all generators (sources) remaining after *n* event (kW)

Typical CLSP Contingency Screen

Description		Source Status					Details							
Contingency Number	Contingency Description	Breaker Status Open Close	Bus Connection	Present Power (MW)	IRM Set Point (MW)	IRM Maximum (MW)	IRM Actual (MW)	Current Maximum (MW)	Contingency Status	Available Capacity (MW)	Measured Load (MW)	Required To Shed (MW)	Selected to Shed (MW)	Contingency Satisfied
C1	Generator GT-101A Turbine Trip	Close	Bus O	21.96	2.00	4.00	2.00	23.96	Enabled	71.45	41.58	0.00	0.00	Yes
C2	Generator GT-101B Turbine Trip	Open	Bus O	0.00	2.00	4.00	0.00	0.00	Disabled	0.00	0.00	0.00	0.00	Yes
C3	Generator GT-101C Turbine Trip	Close	Bus 1	20.45	1.00	4.00	1.00	21.45	Enabled	73.96	41.58	0.00	0.00	Yes
C4	тร Breaker Trip	Racked Out	Bus 5	0.00	50.00	50.00	0.00	0.00	Disabled	0.00	0.00	0.00	0.00	Yes
C5	те Breaker Trip	Close	Bus 0	-0.83	50.00	50.00	50.00	0.00	Enabled	45.41	41.58	0.00	0.00	No
C6	т4 Breaker Trip	Bad Breaker	Bus 1	0.00	N/A	N/A	0.00	0.00	Disabled	0.00	0.00	0.00	0.00	Yes

SEL CLSP Crosspoint Switch Screen

SEL CLSP Load Screen

Test Mod	Test Mode Enabled										
	Load List		Load Status								
Load Number	d Number Breaker Description			Test Shed Select	Load Priority	Live Power (MW)	Force Value Of Power (MW)	Toggle Live Force			
L01	Load 1	Substation 1 Feeder 1	Close	Normal	1	1.89	0.00	Normal			
L02	Load 2	Substation 1 Feeder 2	Close	Normal	2	4.43	0.00	Normal			
L03	L03 Load 3 Substation 1 Feeder 3		Close	Normal	3	6.21	0.00	Normal			
L04	Load 4 Substation 1 Feeder 4		Close	Normal	4	3.59	0.00	Normal			
L05	Load 5 Substation 1 Feeder 5		Open	Normal	5	0.00	0.00	Normal			
L06	Load 6	Load 6 Substation 1 Feeder 6		Normal	6	0.00	0.00	Normal			
L07	Load 7 Substation 1 Feeder 7		Close	Normal	8	0.00 MA	0.00	Normal			
L08	Load 8	Substation 1 Feeder 8	Close	Normal	12	0.97	0.00	Normal			
L09	Load 9	Substation 1 Feeder 9	Close	Normal	7	2.96	0.00	Normal			
L10	Load 10	Substation 2 Feeder 1 Breaker	Open	Test Shed	0	1.26	0.00	Normal			
L11	Load 11	Substation 2 Feeder 2 Breaker	Close	Normal	10	3.68	0.00	Normal			
L12	Load 12	Substation 2 Feeder 3 breaker	Close	Normal	11	2.13	2.13	Forced			
L13	Load 13	Substation 3 Feeder 1 Breaker	Bad Breaker	Normal	0	0.00	0.00	Normal			
L14	Load 14	Substation 3 Feeder 2 Breaker	Close	Normal	9	6.16	0.00	Normal			

Operation Example – Multiple Contingencies

23

Proactive Overload Load-Shedding Integrator

Figure 3-1: Integrator Load-Shedding Logic

Proactive Overload Load-Shedding Screen

Test Mode Enabled														
Description	Description Setpoints					Status								
Generation Number	Integration Pickup % of MW	Integrator Threshold (PU x Second)	Minimum to Shed (MW)	Maximum Reset Time (Seconds)	Breaker Status Open Close	Available Capacity (MW)	Present Power (MW)	Frequency (Hz)	Contingency Status	Seconds to Shed	Required to Shed (MW)	Selected to Shed (MW)		
Generator GT-101A	98.00	100.00	2.00	10.00	Close	21.75	21.97	59.97	Disabled	0	0.00	0.00		
Generator GT-101B	98.00	100.00	2.00	10.00	Open	18.22	0.00	60.00	Disabled	0	0.00	0.00		
Generator GT-101C	98.00	100.00	2.00	10.00	Close	21.17	20.63	60.00	Disabled	0	0.00	0.00		
Substation T6	98.00	100.00	2.00	10.00	Open	50.00	0.00	59.97	Disabled	0	0.00	0.00		
Substation T5	98.00	100.00	2.00	10.00	Close	50.00	-1.43	59.96	Enabled	0	0.00	0.00		

Backup – Underfrequency Load Shedding

Why?

Strategy: Keep Frequency at Nominal Ball in a Bowl Analogy

Advantages of powerMAX UFLSP

- Dynamically selects loads (only active loads to shed)
- Incorporates load consumption (MW) into selection
- Tracks power system topology
- Selects correct amount of load to shed for every underfrequency threshold
- Sheds less load with better impact
- Easily changes priority of sheddable load

UFLSP Algorithm

- Detection logic monitors frequency and asserts underfrequency trigger
- Signal conditioning logic in UFLSP protects against chatter
- Event calculation logic calculates load shed for each event
- Crosspoint logic determines load trip signals

UFLSP Screen

Inertia-Compensated Load Shedding Do It Right!

MW Load to Shed

F DFDT	59	58
< 0.5	2	8
0.5–1.0	8	182
> 1.0	182	10

