

POWERMAX® ['pou (ə)r 'maks] *noun:* a system designed to maintain stability

Niraj Shah SPS Branch of SEL Engineering Services Inc.

Agenda

- POWERMAX Power Management System Introduction
- POWERMAX Functionalities (IDDS, LSP, GCS, A25A)
- POWERMAX Simulators
- MOTORMAX LV Motor Management System Introduction

Agenda

- POWERMAX Power Management System Introduction
- POWERMAX Functionalities (IDDS)
- POWERMAX Simulators
- MOTORMAX LV Motor Management System Introduction

POWERMAX Functions

What Is an IDDS?

Islanding Detection and Decoupling

- Islanding detection detects islanding condition when microgrid disconnects from utility power system
- Decoupling microgrid capability of detecting an ongoing utility disturbance and intentionally islanding microgrid

IDDS Schemes

- Direct transfer trip
- Local-area-based
 - Rate-of-change of frequency (81R) and fast rate-of-change of frequency (81RF)
 - Undervoltage / overvoltage and underfrequency / overfrequency
- Wide-area-based
 - Angle-based
 - Slip and acceleration-based

81RF Characteristic

Wide-Area-Based Schemes

$$\begin{aligned} \text{Angle} &= \delta_k = \angle V_k^{(1)} - V_k^{(2)} \\ \text{Slip frequency} &= S_k = (\delta_k - \delta_{k-1}) \frac{\text{MRATE}}{360} \\ \text{Acceleration} &= A_k = (S_k - S_{k-1}) \text{ MRATE} \end{aligned}$$

Slip Acceleration Characteristic Detecting an Islanding Event

Example Industrial Power System

Case A IDDS Blocked

Loss of 1,200 MW of generation followed by load shedding

Utility Disturbance Desired Condition: Detect and Decouple

Case	Frequency Rate	Export	Detection Time
	(Hz / s)	(MW)	(ms)
B3	1.5	260	900
B5	-1.8	800	720
B6	0.6	800	1,380

Utility Disturbance Desired Condition: Detect and Decouple

Angle-Based IDDS Desired Condition: Detect and Decouple

Case	Export / Import (MW)	Detection Time (ms)
D1	520	160
D2	70	300
D3	0	500

Angle-Based IDDS Desired Condition: Detect and Decouple

Case D1 Slip and Acceleration Characteristic

Case E1 IDDS Rides Through (No Decoupling)

Single-phase fault and fault isolated by opening Line 1

Lessons Learned Relative Effectiveness of Schemes

Criterion	DTT	Local-Area	Wide-Area
Remote communications available	Effective	Effective	Effective
Remote communications not available	Not effective	Effective	Not effective
Local generation matches local load during unintentional islanding	Effective	Not effective	Effective
Several remote side breakers that can create islanding	Not effective	Effective	Effective
Utility disturbances and no breaker opening	Not effective	Effective	Partially effective

Summary

- Sustainable electrical grids require fast and reliable IDDS combined with load and generation balancing
- DTT provides fastest speed for islanding detection
- Local-area-based 81RF provides reliable decoupling for utility disturbances
- Wide-area-based synchrophasor schemes detect islanding condition during very low power flow conditions

