

Microgrid System Design, Control, and Modeling Challenges and Solutions

Scott Manson SEL ES Technology Director

Agenda

- Example Projects
- Challenges
- Design Principles
- Reconnection
- Seamless Islanding
- Frequency Resilience
- Visualization
- Modelling
- What is Next?

Microgrid Examples

PowerMAX® System Family Tree

PowerMAX Technology	Typical Customer	System Size
Utilities	Bulk Electric Power Transmission & Generation	> 1 GW
Industrial Power Management	Oil & Gas, Heavy Industries	> 100 MW
Commercial Microgrids	Communities, Universities	> 10 MW
Garrison Microgrids	Fixed Military Installations	< 10 MW
Mobile Microgrids	Disaster Relief, Forward Operating Bases	< 0.5 MW

How Others Use SEL Equipment for Microgrids and DERs

	Do it yourself	
Segment	Simple Microgrids	Simple DER PCC Interconnection
Technology	Relays	Relays, RTACS + Grid connect library
Project Funding	any	Independent power producers or Utilities
Customer Examples	Entergy	Utilties - XM (Columbia) Southern companies, Also Energy, New York Power Authority with Tesla batteries
Approximate Project Cost	\$5K	\$20K
Approximate Project Size	< 10MW	<100MW
ES office	Local Office	Local Office

PowerMAX® for Utilities is Purpose Built for Gigawatt Scale Generation

PowerMAX® for Industrials Designed for Heavy Industrial Customers

PowerMAX® for Commercial Customers Award Winning Controls for Complex Grids > 10MW

Paris Island PowerMAX® Garrison

- Awarded to Ameresco via ESPC
- SEL PowerMAX being commissioned now

"This is most comprehensive seamlessly integrated DoD Project" - Ameresco

PowerMAX® Mobile Technology Interoperable, Simple solution for <0.5MW Microgrids

- Red Cross
- FEMA
- Private Disaster Relief

A4

 Forward
 Operating Base (FOBB)

Microgrid Challenges

Protective Relays Are Mandatory Protect Assets, Environment, and People

Not Resilient

Power System Split Into Six Islands Collapses

Resilient

Same Six Islands With Mature Microgrid Technology

Frequency and Voltage are Resilience Metrics

Engines Cannot Respond Instantaneously Frequency Decay Is Extraction of Kinetic Energy From Inertia

System Inertia

System inertia (H) is J • (kg • m²) in terms of pu

$$H = \frac{J \cdot (kg \cdot m^2)}{MVA} = seconds$$

Frequency decay is driven by power disparity and inertia

$$\frac{df}{dt} = \frac{P_{disparity}}{2Hf}$$

Load Composition Affects Frequency Stability Noninertial Effects

- Electric loads increase transients
- Motors reduce transients

Load Balancing Must Happen *Faster* With DER Inverter-Based Generation

Controller Must Understand DER Capability

Protection Must *Adapt* to Changing Fault Conditions

- Fault levels
- Grounding
- Directions
- Impedances

DER Inverter Behavior Is Subject to Human Preference

DER Inverter Behavior Is Subject to Human Error

DER Inverter Phase-Locked Loops (PLLs) Fail When You Need Them Most

Requirements for Technology

- 1. Safe
- 2. Reliable (resilient)
- 3. Economical

Relays Are the Foundation of Microgrid Controls

- Multifunction protection
- Remote I/O
- Metering
- Power quality monitoring
- Programmable logic controller function
- IEC 61850 compliance

- MIRRORED BITS[®] high-speed communications
- Continuous self-diagnostics
- Synchrophasors
- DC battery monitoring
- Front-panel interface that replaces all control switches and pushbuttons

Centralized Controllers Communicate to Relays

Use Relays for Small Grids; Use Relays and Controllers for Larger Grids

IEEE 2030.8-2018 Requires Three Types of Mandatory Data Collection Which are in SEL relays!

Requirement

Sequence of Events (SOE)

Event oscillography

Continuous data collection

Reconnection

PCC Reconnection Is a Relay Function

Seamless Islanding

PCC Disconnection Is Protective Relay Function

PCC Disconnection Is Protective Relay Function

Fast 81RF Element Improves Seamless Islanding

Fast 81RF Element Improves Seamless Islanding

Integrated Relays and Controllers Provide Resilient Behavior

Seamless Islanding Requires Fast Load Shedding

Make Sure Your Controller Is up to the Task

Fast and Scalable Architectures Are Required

Contingency Load-Shedding Calculation

$$L_n = P_n - \sum_{g=1}^m IRM_{ng}$$

where:

n = contingency (event) number m = number of generators in system g = generator number, 1 through m $L_n = \text{amount of load selected for } n \text{ event (kW)}$ $P_n = \text{power disparity caused by } n \text{ event (kW)}$ $\text{IRM}_{ng} = \text{incremental reserve margin of all remaining generators after } n \text{ events (kW)}$

Inertial Based Load-Shedding Systems Operate when a Contingency Load Shedding System is out of service

- Broken wires
- DC battery failures
- Breaker contact failures
- Governor problems

- Fuel or air problems
- Improper maintenance
- Incomplete commissioning

Inertia and Load Composition Compensated Load Shedding Systems stop Blackouts

F < 0.5 2 8 **Normal Operation** 0.5 to 60 8 182 1.0 Inertia-Compensated > 1.0 182 10 **Success** 59 Macrogrid Load Shed 58 F_2 **Traditional Failure** 1 Microgrid 57 **Complex Grid** Blackout Load Shed \sim H • DFDT = 8 • 1 = 8 MW 11 L2Load Shed \sim H • DFDT = 4 • 2 = 8 MW F₁ F۶

MW Load to Shed

59

58

F

DFDT

Fast Load Shedding Makes Seamless Islanding Possible

Contingency based Inertial compensated Frequency based Overload Manual

Frequency Resilience

What Affects Power System Resilience?

- Frequency response characteristic (FRC)
- Major disturbances
- Inverter misoperation
- Voltage and MVAR margins
- Frequency and MW margins
- Economics

FRC Example – Large Offshore Natural Gas Liquefaction Plant Sudden 0.3 pu Load Increase

Three Common FRC Variants

Location	FRC Type	Calculation	FRC
Point A	Transient	50 • 0.3 / (50 – 48.7)	11.5
Point B	Locked rotor (extraction mode)	50 • 0.3 / (50 – 48)	7.5
Point C	System long-term (system droop characteristic)	50 • 0.3 / (50 – 49.4)	25

Solutions for Poor FRC

- Use better engine and voltage controls
- Add inertia
- Add motor loads with windage
- Limit electronic loads with variable speed drive (VSD)
- Use batteries
- Include load shedding or curtailment
- Include generation shedding or runback

Step 1 – Identify Grid Time Constants

Step 2 – Tabulate Incremental Reserve Margin (IRM)

100% DER (kW) (%	(kW)
Photovoltaic 200	0
Future Battery (slow) 1,000	50
Battery (fast) 1,000 100	1,000
0.5 second Steam extraction turbine 1,200	0
Now $\frac{1}{10}$ = IRM Combined heat and power 900 10	90
Gas turbine 1,500 40	600
Δt -1 minute Diesel generator set 1,000 40	400
Time (seconds)Totals6,80031.5	2,140

Step 3 – Compare Total IRM to Largest Disturbance

Visualization

Time-Synchronized Condition Monitoring

Contingency	#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
NGL BC B721	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
NGL BC B723	2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
NGL BC B722	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
NGL BC B720	4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-4 BC B712	5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-4 BC B714	6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-4 BC B713	7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-4 BC B711	8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-4 BC B612	9	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-2 BC B505	10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
NGL/G4 Tie A	11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
NGL/G4 Tie B	12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-4 Intertie A	13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-4 Intertie B	14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-4 GOSP-2 Tie	15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
NGL/GOSP-3 Tie A	16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
NGL/GOSP-3 Tie B	17	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-3 BC B701	18	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-3 BC B702	19	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
GOSP-3 BC B703	20	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

Load Selection Screens Teach Operators to Dispatch Grid Differently

Simplified Graphics for Small Microgrids

													TMG
Gen Prior	rity Contro	ol x OneLine	x										
					_								
		RAPID STOP		LOAD SHAR		START	/STOP	О ЕМЕ	RGENCY MOD		WET ST/	ACK CONTROL	GEN ADD (%) current value: 0
	GEN	STATUS	CONTROL ENABLE	RATING kVA	kW	kvar	START/ STOP TIMER (Sec)	EFFICIENCY (kWH/Gal)	FUEL REMAIN- ING (HRS)	FUEL REMAIN- ING (Gal)	WET STACKING ALARM	WET STACKING CONTROL STATUS	GEN ADD THRESHOLD: 60 %
G	iil1	On		30	0	0	30	0.33	999	36.0		Disabled	GEN REMOVE (%) current value: 0
G	il2	On		30	0	0	30	0.33	999	38.4	\bigcirc	Disabled	0.0
Ta	ay1	On		30	0	0	30	0.33	999	67.0	\bigcirc	Disabled	GEN REMOVE THRESHOLD: 30 %
Ta	ay2	On		30	0	0	30	0.33	999	73.5	\bigcirc	Disabled	MIN # GENSETS
тс	QG1	On		60	0	0	30	0.33	999	43.0		Disabled	0.0
тс	QG2	On		60	0	0	30	0.33	999	41.3	\bigcirc	Disabled	MIN # GENSETS: 1
C/	AT1	On		100	0	0	30	0.33	999	101.4	\bigcirc	Disabled	TOTAL kW 0.0 kW
C/	AT2	On		100	0	0	30	0.33	999	112.2	\bigcirc	Disabled	TOTAL kVAR 0.0 kVAR
								_			_		% P 0.0 %

DER
Dispatch
Control
Screens

	LSP1 LSP2				AGC	: ANC	VCS					User: Operator	NEW
	AGC1 AGC2	ONELINE	COMMS	SYNC	LSP	AGC	ALARMS	SEL	SER	LOGIN	LOGOUT /	11/26/2007 10:54:35 AM	ALARM
	LSP1 - HMI	COMM FAIL	LSP2	- ны сом	M FAIL					AGC/VCS2 -	HMI COMM FAIL		
AGC AND VCS	ISLAND CONTROL MA	ATRIX AND TI	E LINE CON										
Í													

AUTOMATIC GENERATION CONTROL

	DESC	RIPTION	CON	TROL/S	TATUS	SETPOINTS				STA	TUS			ALAF	-		
	GENERTOR	DESCRIPTION	PRESENT P (MW)	MW ENABLE CONTROL	MW CONTROL MODE	MW BASE SETPOINT	MW UPPER REGULATION LIMIT	MW LOWER REGULATION LIMIT	BUS CONNECTION	GENERATOR MODE DROOP/ISOCH	BREAKER CLOSED CLOSE OPEN	WITHIN BAND YES O NO O	AT MAX CAPACITY YES 🔵 NO 🕒	FOLLOWING ERROR YES 🔵 NO 🔘	GOVERNOR NOT RESPONDING VES O NO O	DISABLED ON ALARM VES O NO O	RUN PERMISSION VES 🔵 NO 🥥
- 4	GEN-8A	B24-P-0008A CGT GENERATOR	0.02	DISABLED	BASE	40	65	5		DROOP		\bigcirc					
SP	GEN-8B	B24-P-0008B CGT GENERATOR	0.02	DISABLED	BASE	40	65	5		ISOCH		\bigcirc	igodol				
မိ	GEN-8C	B24-P-0008C CGT GENERATOR	0.02	DISABLED	BASE	40	65	5		ISOCH		\bigcirc	0	igodol			

VOLTAGE CONTROL SYSTEM

	DESC	RIPTION	CON	TROL/S	TATUS		SETPOI	NTS		STA	TUS			ALAF	RMS		
	GENERTOR	DESCRIPTION	PRESENT Q (MVV)	MVAR ENABLE CONTROL	MVAR CONTROL MODE	MVAR BASE SETPOINT		MVAR LOWER REGULATION LIMIT	BUS CONNECTION	GENERATOR MODE VOLTMVAR	BREAKER CLOSED CLOSE OPEN O	WITHIN BAND YES O NO O	AT MAX CAPACITY VES O NO O	FOLLOWING ERROR YES O NO O	EXCITER NOT RESPONDING YES O NO O	DISABLED ON ALARM VES ON NO O	RUN PERMISSION YES O NO O
- 4	GEN-8A	B24-P-0008A CGT GENERATOR	0.00	DISABLED	BASE	10	50	2		DROOP		\bigcirc				\bigcirc	
OSP	GEN-8B	B24-P-0008B CGT GENERATOR	0.00	DISABLED	BASE	10	50	2		DROOP		\bigcirc	igodol	igodol			
ŭ	GEN-8C	B24-P-0008C CGT GENERATOR	0.00	DISABLED	BASE	10	50	2		DROOP		\bigcirc	igodol	lacksquare		ig	

Simplified Load-Shedding Configuration

PRIMARY	LO	AD	SHED		SECON	DARY LOAD SE	HED	
CONTING	ienc	IES	;		CONTIN	NGENCIES		
ок	1	-	L1 TRIP		OK	15 - UNDER	FREQ 1	BUS A
ок	2	-	G1 20kV TRIE		OK	16 - UNDER	FREQ 2	BUS A
0K 👘	З	-	G1 10kV TRIE	•	0K	17 - UNDER	FREQ 1	BUS B
0K 👘	4	-	G2 TRIP		0K –	18 - UNDER	FREQ 2	BUS B
ок	5	-	L2 TRIP					
0K 👘	6	-	G3 20kV TRIE	2				
0K 👘	7	-	G3 10kV TRIE	•				
0K 👘	8	-	G4 20kV TRI	•				
0K 👘	9	-	G4 10kV TRI	•				
0K 👘	10	-	TIE TRIP/BU:	5 A				
0K 👘	11	-	TIE TRIP/BU	5 В				

UNDER FREQUENC	Y LOAD SHED (MW)
MW TO SHED AT LEVEL 1:	2.00
MW TO SHED AT LEVEL 2:	2.00

LSP1 CODE RUNNING:	339917
CONTINGENCY:	1
AVAILABLE CAPACITY (MW):	104.00
MEASURED LOAD (MW):	108.00
REQUIRED TO SHED (MW):	4.00
SELECTED TO SHED (MW):	4.14
20 KV BUS:	A B
ENABLED:	YES
TRIGGER SIGNALS AVAILABLE:	YES
SATISFIED:	YES

PRIMARY LOAD SHED SECONDARY LOAD SHED

LOAD SHED RESET

TEST COMMANDS

Modeling

cHIL Modelling Mandatory for big PowerMAX jobs

Hardware-in-the-Loop (HIL) Testing Controls Quality

Capturing Live System Dynamics Enables Engineers to Build Accurate Models

Not All Simulation Software Is Appropriate for Testing Microgrid Control and Protection

Function	Simplified	EMTP (Not Real Time)	EMTP (Real Time)	cHIL
Relay coordination	~			
Rotor angle stability		✓	 Image: A set of the set of the	f
Frequency stability		 Image: A second s	 Image: A set of the set of the	
Voltage collapse		 Image: A second s	 Image: A set of the set of the	EMTP
Power flow	 Image: A second s	 Image: A second s	 Image: A set of the set of the	Simplified
IRM / DRM and UF / OF coordination		✓	~	$\square \land \land \land \land$
Voltage collapse		 Image: A second s	~	
Motor starting	 Image: A second s	×	 Image: A start of the start of	
FAT simulation			 Image: A start of the start of	
Operator training			✓	

What Is Next?

"Self Driving" Power System Publish - Subscribe Communications

Complete Interopability Between Generators of Different sizes & Manufacturers

Resilience Mode Superior Load Sharing and Frequency Control Performance

Conclusions

- Design for resilience
- Use relays for simple microgrid systems
- Use relays + centralized controllers for complex microgrid systems
- Test all controls and protection systems with cHIL
- Use OT SDN for networking and security

Questions?