

Protective Relay Fundamentals

Derrick Haas Regional Technical Manager

Protection Review

- Fault types
- Electrical equipment damage
- Time versus current plot
- Protection requirements
- Protection system elements

Power System Faults

- Short circuits
- Contacts with ground
 - Isolated neutral systems
 - High-impedance grounded systems
- Open phases

Typical Short-Circuit-Type Distribution

Single-phase-to-ground70 - 80%Phase-to-phase-to-ground10 - 17%Phase-to-phase8 - 10%Three-phase2 - 3%

Faults in Electrical Systems Produce Current Increments

Temperature Rise From Current

Factors Influence Wire Heating

Insulated Conductor (Cable) Thermal Damage

Insulated Conductor Thermal Damage

Electrical Equipment Component Thermal Damage Curve

Mechanical Damage

Mechanical forces (f₁ and f₂) produced by short-circuit currents cause instantaneous damage to busbars, insulators, supports, transformers, and machines

 $f_{1}(t) = k i_{1}(t) i_{2}(t)$

Real-World Mechanical Damage

Power System Protection Requirements

- Reliability
 - Dependability
 - Security
- Selectivity

Power System Protection Requirements

- Speed
 - System stability
 - Equipment damage
 - Power quality
- Sensitivity
 - High-impedance faults
 - Dispersed generation

Protection Functions

- Fault detection
- Faulted element disconnection
- Fault indication

Protective Devices

Fuses

- Automatic reclosers
- Sectionalizers
- Circuit breakers
- Protective relays

Relay Classification

- Protective
- Regulating
- Reclosing and synchronism check
- Monitoring
- Auxiliary

IEEE C37.2 Device Numbers

- 51 Time-overcurrent relay
- 50 Instantaneous-overcurrent relay
- 67 Directional-overcurrent relay
- 21 Distance relay
- 87 Differential relay
- 52 Circuit breaker

Protective Relaying System

Protection System Elements

- Protective relays
- Circuit breakers
- CTs and VTs (instrument transformers)
- Communications channels
- DC supply system
- Control cables

Protection System Elements

- Protective relays
 - Monitor
 - Detect
 - Report
 - Trigger

- Circuit breakers
 - Interrupt
 - Isolate from abnormal condition

Instrument Transformers

• CTs

Current scaling

Isolation

• VTs

Voltage scaling

Isolation

Overcurrent Relay Connections

DC Tripping Circuit

Overcurrent Relay Setting

- 51 elements
 - Pickup setting
 - Time-dial setting
- 50 elements
 - Pickup setting
 - Time delay

Review

- What is the function of power system protection?
- Name two protective devices
- For what purpose is IEEE device 52 used?
- Why are seal-in and 52a contacts used in the dc control scheme?
- In a typical feeder OC protection scheme, what does the residual relay measure?

Digital Relay Basics

Simple Protective Relay

Electromechanical Instantaneous Overcurrent Elements

Alternatives for Setting Pickup Current

- Tap in relay current coil
- Adjust air gap
- Adjust spring

Electromechanical Inverse-Time Overcurrent Elements

Simplified View Shaded Pole Element

Electromagnetic Induction Principle

Summary of Induction 51 Element Settings

- Pickup current setting taps in relay current coil
- Time-current curve setting controls initial disk position (time-dial setting)
Microprocessor-Based Protection

Digital Relay I/O Scheme

Digital Relay Architecture

Digital Relay Algorithm

Relay Operation Analog Inputs

Signal Path for Microprocessor-Based Relays

A/D Conversion

Digital Filtering

Phasor Calculation

Sinusoid-to-Phasor Conversion

Sinusoid to Phasors Current Channels Are Sampled

Sinusoid to Phasors

- Pick quadrature samples (1/4-cycle apart)
- Pick current sample (x sample)
- Pick previous sample 1/4-cycle old (y sample)

Sinusoid to Phasors

Relay Operation Relay Word Bits and Logic

Relay Word Bits

- Instantaneous overcurrent
- Time overcurrent
- Voltage elements

Inputs

- Internal relay logic SELOGIC[®] variable (SV) and latches
- Outputs

Assert to logical 1 when conditions are true, deassert to logical 0 when conditions are false

Instantaneous Overcurrent Element

- 50P1P = instantaneous phase overcurrent setting
- IA = Phase A measured current
- 50A1 = 1 if IA ≥ 50P1P; 50A1 = 0 if IA < 50P1P

Instantaneous Overcurrent Element

- 50P1 = 1 if 50A1, 50B1, or 50C1 = 1
- 50P1 = 0 if 50A1, 50B1, and 50C1 = 0

Phase Time-Overcurrent Element SEL-751 Feeder Protection Relay

Controls the Torque Control Switch

51P1TC	Torque Control	Setting	Reset Timing
State	Switch Position	51P1RS=	
Logical 1	Closed	Y	Electromechanical
Logical 0	Open	N	1 Cycle

Phase Time-Overcurrent Element SEL-651R-2

Standard Time-Current Characteristics IEEE C37.112-1996

Curve Type	Operating Time	Reset Time
U1 (moderately inverse)	$t_{p} = TD \bullet \left(0.0226 + \frac{0.0104}{M^{0.02} - 1} \right)$	$t_r = TD \cdot \left(\frac{1.08}{1 - M^2}\right)$
U2 (inverse)	$t_p = TD \cdot \left(0.180 + \frac{5.95}{M^2 - 1} ight)$	$t_r = TD \bullet \left(\frac{5.95}{1 - M^2}\right)$
U3 (very inverse)	$t_{p} = TD \bullet \left(0.0963 + \frac{3.88}{M^{2} - 1}\right)$	$t_{\rm r} = {\rm TD} \cdot \left(\frac{3.88}{1-{\rm M}^2}\right)$
U4 (extremely inverse)	$t_{p} = TD \bullet \left(0.0352 + \frac{5.67}{M^{2} - 1}\right)$	$t_r = TD \cdot \left(\frac{5.67}{1 - M^2}\right)$
U5 (short-time inverse)	$t_{p} = TD \cdot \left(0.00262 + \frac{0.00342}{M^{0.02} - 1}\right)$	$t_r = TD \cdot \left(\frac{0.323}{1 - M^2}\right)$

U1 Moderately Inverse Curve

SEL-651R Time-Overcurrent Curves

- Standard U.S. curves (U1–U5)
- Standard IEC curves (C1–C5)
- Recloser curve:

A/101	H/122	R/105	2/135	8+/111	16/139
B/117	J/164	T/161	3/140	9/131	17/103
C/133	KP/162	V/137	4/106	KG/165	18/105
D/166	L/107	W/138	5/114	11/141	
E/132	M/118	Y/120	6/136	13/142	
F/163	N/104	Z/134	7/152	14/119	
G/121	P/115	1/102	8/113	15/112	

Relay Word Bit Tables 8 Relay Word Bits Per Numbered Row

Row		Relay Word Bits						
1	TLED_08	TLED_07	TLED_06	TLED_05	TLED_04	TLED_03	TLED_02	TLED_01
2	TLED_16	TLED_15	TLED_14	TLED_13	TLED_12	TLED_11	TLED_10	TLED_09
3	TLED_24	TLED_23	TLED_22	TLED_21	TLED_20	TLED_19	TLED_18	TLED_17
4	50A1	50B1	50C1	50P1	50A2	50B2	50C2	50P2
5	50A3	50B3	50C3	50P3	50A4	50B4	50C4	50P4
6	50G1	50G2	50G3	50G4	50Q1	50Q2	50Q3	50Q4

Boolean Logic

- Mathematics of logical variables (Relay Word bits)
- Operators AND, OR, NOT, rising and falling edge, and parentheses
- SELOGIC control equation Boolean operators
 - Defined symbols
 - Application rules

SELOGIC Control Equation Operators

Operator	Symbol	Functionality
Parentheses	()	Group terms
Negation		Change sign of numerical value
NOT	NOT (!)	Invert the logic
Rising edge	R_TRIG (/)	Assert output for one processing interval on input rising-edge transition
Falling edge	F_TRIG <mark>(\)</mark>	Assert output for one processing interval on input falling-edge transition
Multiply	*	Multiply numerical values

SELOGIC Control Equation Operators

Operator	Symbol	Functionality
Divide	/	Divide numerical values
Add	+	Add numerical values
Subtract		Subtract numerical values
Comparison	<, >, <=, >=, =, <>	Compare numerical values
AND	AND (*)	Multiply Boolean values
OR	OR (+)	Add Boolean values

SELOGIC Control Equation Examples

Programmable Logic

E = A AND B OR C OR NOT D

SELOGIC Control Equation Examples

SEL-387A Internal Trip Logic

SELOGIC Control Equation Example

OUT101 = (51PT or OUT101) and not TRGTR

Optoisolated Inputs

- Relay Word bits IN101 and IN102 monitor physical state inputs
- Debounce timer is built in and settable

Latching Control Logic

SET01 = CLOSE RST01 = TRIP LT01 = 52A

SV Timer

- Set as logic placeholder and timer
- Example settings
 - SV05 = 50P1
 - SV05PU = 6 cycles
 - SV05DO = 60 cycles
- Operation
 - SV05 asserts when 50P1 asserts
 - SV05T asserts 0.1 s after 50P1 asserts
 - SV05T deasserts 1 s after 50P1 deasserts

Outputs

- When OUT101 equation is true (logical 1), OUT101 closes
- Example setting: OUT101 = SV05T
- Operation: OUT101 closes after 50P1 has been asserted for 0.1 s
Track Relay Word Bit State Change With Sequential Events Records (SER)

Example: 50P1 = 4 A; CTR = 1,000; Primary PU = 4,000 A

=>SER				
FEEDEH STATI(R 1 DN A		Date: 04/17/20: Time Source: in	15 Time: 15:17:13.714 nternal
FID=SH	EL-651R-2-R4C	15-V0-Z005003-D2	20140306 CID=A:	281
#	Date	Time	Element	State
8 7 5 4 3 2 1	04/17/2015 04/17/2015 04/17/2015 04/17/2015 04/17/2015 04/17/2015 04/17/2015 04/17/2015	15:14:54.474 15:14:54.574 15:14:54.574 15:14:54.965 15:14:54.965 15:14:54.965 15:14:55.965 15:14:55.965	50P1 SV05 SV05T OUT103 50P1 SV05 SV05T OUT103	Asserted Asserted Asserted Deasserted Deasserted Deasserted Deasserted

Event Reporting

- Event reports are helpful in fault analysis
- Relays collect 15-cycle (settable) event reports when ER or any TRIP Relay Word bit asserts, or whenever TRI or PUL serial port command is executed
- HIS command provides summary of events

=>HIS									
FEEI STAJ)ER 1 MION A	Date: 04/17/2015							
#	DATE	TIME	EVENT	LOCAT	CURR	FREQ	GST RHR	TARC COLUMN 1	GETS COLUMN 2
1 2 3	04/17/2015 04/17/2015 04/17/2015	15:31:07.524 15:30:54.725 15:30:21.354	TRIG ABC T BC T	\$\$\$\$\$ -0.00 0.06	1 15756 6183	60.0 60.0 60.0	131 131 131	111110001000 111110001000 110110001000	001000000000 001100000000 001100111000
4 = >	04/17/2015	15:30:09.602	АВ Т	0.02	6191	60.0	131	111100001000	001100111000

Event Reporting

=>EVE

FEEDER 1 STATION A Date: 04/17/2015 Time: 15:44:59.878 Time Source: internal

FID=SEL-651R-2-R405-V0-Z005003-D20140306 CID=A281 Event Number = 10049

Cui	rrents (Amps Pr	i)		Va	ltages	(kV Pri)				5G TC2N
IA IA	IB	ĪC	IG	VAV	VВХ	ΨСΥ	VAZ	VBZ	VCZ	Freq	RLAD
-1030 -71 1029 71	573 -857 -575 857	456 924 -457 -925	0 -0 -0 0	16.5 -25.1 -16.5 25.1	13.5 26.9 -13.5 -26.9	-30.0 -1.7 30.0 1.7	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	60.00 60.00 60.00 60.00	N N N
-1029 -73 -289 2891	573 -857 -574 857	456 924 -457 -925	0 -0 -0 0	16.5 -25.1 -11.1 17.4	13.5 26.9 -13.5 -26.9	-30.0 -1.7 30.0 1.7	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	60.00 60.00 60.00 60.00	N N N
1014 -5943 -424 6177	574 -858 -574 857	456 924 -457 -925	0 -5877 -1455 6109	5.6 -9.0 -5.5 8.4	13.5 26.9 -13.5 -26.9	-30.0 -1.8 30.0 1.7	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	60.00 59.92 59.92 59.87	N G G G
423 -6177 -424 6176	573 -858 -575 857	456 924 -457 -925	1452 -6111 -1456 6108	5.5 -8.4 -5.5 8.4	13.5 26.9 -13.5 -26.9	-30.0 -1.8 30.0 1.7	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	59.87 59.87 59.87 59.87 59.94:	G G G
422 -6178 -420 6177	574 -858 -575 857	456 924 -457 -925	1452 -6112 -1452 6109	5.5 -8.4 -5.5 8.4	13.5 26.9 -13.5 -26.9	-30.0 -1.7 30.0 1.7	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	59.94 59.94 59.94 59.94 59.94	*G *G *G *G
414 -6179 -409 6179	573 -859 -573 859	457 923 -459 -924	$1444 \\ -6115 \\ -1441 \\ 6114$	5.5 -8.4 -5.5 8.4	13.5 26.9 -13.6 -26.9	-30.0 -1.7 30.0 1.7	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	59.94 60.00 60.00 60.00	*G *G *G *G

Event Reporting

[7]									
402 -6181 -396 6180	571 -860 -571 860	459 922 -461 -923	1432 -6119 -1428 6117	5.5 -8.4 -5.5 8.4	13.6 26.8 -13.6 -26.8	-30.0 -1.6 30.0 1.6	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 60.00 *G -0.0 60.00 *G -0.0 60.00 *G 0.0 60.00 *G
386 -6182 -379 6181	569 -861 -569 861	461 921 -463 -922	1416 -6122 -1411 6120	5.5 -8.4 -5.5 8.4	13.7 26.8 -13.7 -26.8	-30.0 -1.6 30.0 1.5	0.0 -0.0 -0.0 -0.0	0.0 -0.0 -0.0 -0.0 0.0	0.0 60.00 *G -0.0 60.00 *G -0.0 60.00 *G 0.0 60.00 *G
371 -6182 -364 6182	567 -863 -566 863	464 920 -466 -921	1402 -6125 -1396 6124	5.4 -8.4 -5.4 8.4	13.7 26.8 -13.8 -26.7	-30.0 -1.5 30.0 1.4	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 -0.0 0.0	0.0 60.00 *G -0.0 60.00 *G -0.0 60.00 *G 0.0 60.00 *G
10 355 -6183 672 3508	564 -864 -294 493	465 919 -491 -519	1384 -6128 -113 0	5.4 -8.4 -2.8 4.8	13.8 26.7 -14.4 -15.0	-30.0 -1.4 22.8 0.6	0.0 -0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 -0.0	0.0 60.00 *G -0.0 60.00 *G -0.0 60.00**G 0.0 60.00 *N
-848 -418 -2 1	11 -62 -2 0	257 57 -2 0	0 -0 -0 0	0.1 -0.6 -0.0 0.0	7.5 1.6 -0.0 0.0	-7.7 0.1 -0.0 0.0	0.0 -0.0 -0.0 -0.0	0.0 -0.0 -0.0 -0.0 0.0	0.0 60.00 *N -0.0 60.00 *N -0.0 60.00 *N 0.0 60.00 *N
1 -1 -1 1	1 -1 -1 1	0 -1 -1 1	0 -0 -0 0	0.0 -0.0 -0.0 -0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 -0.0 0.0	0.0 60.00 *N -0.0 60.00 *N -0.0 60.00 *N 0.0 60.00 *N
$\begin{bmatrix} 1 & 3 \\ -1 & -1 \\ -1 & 1 \end{bmatrix}$	1 -1 -1 1	$1 \\ -1 \\ -1 \\ 1$	0 -0 -0 0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 -0.0 0.0	0.0 60.00 *N -0.0 60.00 *N -0.0 60.00 *N 0.0 60.00 *N
	1 -1 -1 1	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} $	0 -0 -0 0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 -0.0 0.0	0.0 60.00 *N -0.0 60.00 *N -0.0 60.00 *N 0.0 60.00 *N
1 -1 -1 1	1 -1 -1 1	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} $	0 -0 -0 0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 -0.0 -0.0 0.0	0.0 60.00 *N -0.0 60.00 *N -0.0 60.00 *N 0.0 60.00 *N

SEL SYNCHROWAVE EVENT 2015 300 8 × 15000 10000 Legend 5000 0 - 1:IB -5000 -10000 -15000 59.815452 59.865452 59.915452 59.965452 00.015452 **ا× ا**۵ اما 🚳 60 40

Current

Review Questions

- How do microprocessor-based relays create phasors?
- What tools do microprocessor-based relays offer for fault analysis?
- How do SEL relays create control circuits?
- What are Relay Word bits used for in SEL relays?

Summary

- Microprocessor-based relays create phasors from sinusoid (waveform) inputs
- Relay Word bits control relay I/O
- Microprocessor-based relays offer many troubleshooting and fault analysis tools
- SELOGIC control equations provide programming flexibility to create virtual control circuits

Questions?