

Fast Switching Capacitor Banks For Starting Large Medium-Voltage Motors

Presented by: Paul Steciuk Paul.Steciuk@nepsi.com

The Cost-Effective Alternative to VFD Starters

Northeast Power Systems, Inc. | 66 Carey Road Queensbury, NY 12804 |Phone: 518-792-4776 |Fax: 518-792-5767 | www.NEPSI.com | email: sales@nepsi.com

Who is NEPSI – What We Do

- Based in Queensbury, NY
- Work for/co-own a company named NEPSI that Offers the following key products:
 - Medium-voltage metal-enclosed products (2.4kV 38kV) 200 kV BIL Max
 - Shunt Power Capacitor Banks (capacitive vars)
 - Harmonic Filter Banks
 - Shunt Reactor Banks (inductive vars)
 - Hybrid Shunt Capacitor and Shunt Reactor Banks
 - actiVAR Fast Switching Capacitor Banks/Harmonic Filter Banks (2.4kV 13.8kV) for motor start – an alternate to large VFD drives and RVSS
 - Medium Voltage Surge Protection Products
 - RC-Snubbers
 - Motor Surge Protection
 - Medium-Voltage Transient Voltage Surge Protection
- Services
 - Startup | Commissioning | Maintenance
 - Power System Studies
 - Harmonic Analysis, Power Factor, Motor Start

LARGE HARMONIC FILTER SYSTEMS

LARGE HARMONIC FILTER ONE-LINE DIAGRAM

MAJOR MARKETS

- Mining (Copper, Gold, Diamond, Oil Sands, Limestone)
- Renewable Energy (Wind & Solar Power)
- Petro-Chemical
- Utilities (large IOU's, Coops, Muni's)
- Steel
- Pulp & Paper
- Institutions (Hospitals, Universities, Military Bases)
- Private Label
- Others
 - semiconductor, scrap recycling, pharma, waste water

WHAT CAN THE actiVAR[™] BE USED FOR?

- It is a <u>cost effective alternative to VFD motor starters</u> where speed or process control is not required
- Fast "local" supply of reactive power
- Voltage Support
- Meet utility interconnect requirements
 - Inrush current limits
 - Voltage sag limits

5000 HP ACROSS-THE-LINE MOTOR START

TYPICAL PROBLEMS ASSOCIATED WITH ACROSS-THE-LINE STARTING OF LARGE MOTORS

- Voltage sags
- Reduced starting torque of motor
 - Increased starting times
 - Increased motor heat
 - May cause motor to not start
- Motor and transformers may need to be larger to overcome motor starting torque requirements
- May not meet utility interconnect requirements

VOLTAGE SAG MITIGATION OPTIONS FOR LARGE MOTOR STARTS

COMPARISION OF VOLTAGE SAG MITIGATION OPTIONS

RVSS Start

Advantages

- A potentially low cost option
- Soft mechanical start

Disadvantages

- May not be able to meet <u>starting torque</u> requirements
- May not meet interconnect requirements
- Requires E-House Space
- Produce Harmonics

VFD Start

Advantages

- Provides near rated torque at starting
- Soft mechanical start
- Meets utility voltage sag/inrush limits

Disadvantages

- Requires E-house space
- Requires M_n+1 <u>additional</u> motor starters
- Synch Transfer Controls
- High installed cost \$\$\$\$\$
- Produce harmonics
- Long delivery time
- Complexity of equipment
- May require cooling equipment

actiVARTM Start

Advantages

- Provides near rated torque at starting
- Meets interconnect requirements
- Lower cost
- Simplest to install and maintain
- E-House not required Outdoor rated

Disadvantages

- Does not provide a soft start function for mechanical loads that require it
- Requires communication with motor starters (IEC 61850 or direct wiring)

actiVAR[™] ASSISTED MOTOR START

Starting Power Flow @ XFRM Secondary Real: 4.6 MW Reactive: 2.5 MVAR

<u>Starting Current</u> 92A @ 34.5kV 770A @ 4.16kV

 $\frac{actiVAR^{TM} Power Flow}{(VAR Supply to Motor)}$ Real: $\approx 0 MW$ Reactive: 21.3 MVAR

<u>Starting Torque</u> 0.63 PU (of rated torque)

Starting Time 3.7 Seconds

BENEFITS OF USING THE actiVAR

- The actiVAR[™] is a fast <u>transient</u> <u>free</u> local supply of VARs
- The reduction in var flow through the source impedance reduces voltage sag at transformer primary and secondary
- Utility voltage sag, flicker, and inrush limits are met
- Power quality is improved throughout the system
- The motor starts faster due to higher starting torque
- Less heating in the motor during motor start

actiVAR[™] PERFORMANCE

KEY TAKE AWAY

- Voltage drop is significantly reduced to within utility voltage drop limits.
- Starting Torque Proportional to V², translating to quicker motor starts
- Current through service transformer allows customers to meet utility maximum inrush current limits
- Higher voltage to motor results in higher available real power to motor

* Per Unit Starting Current Based on FLA = 624 Amps

actiVAR ASSIST WITH RVSS

RVSS + actiVARTM Start

Advantages

- Lower cost than VFD start
- Extends the functional range of soft start option to higher HP ratings
- Provides "automatic redundancy" in functional HP range of soft start
- Soft mechanical start
- Starting impact < running impact
- Soft start harmonics are reduced while actiVAR is active

Disadvantages

- More complicated than either alone
- Produce some harmonics but at a lower level than standalone RVSS

actiVAR[™] – BASIC OPERATING SEQUENCE

STEP-BY-STEP OPERATING SEQUENCE OF actiVAR $^{\mbox{\scriptsize TM}}$

- actiVARTM sits ready for action waiting for motor start control signal (IEC61850 or direct communication)
- 2. actiVAR[™] receives control signal to close DS1-M's, transitions on near 5-cycles later (at near the time the motor starter contacts make) and supplies the necessary reactive power for the motor being started.
- As motor comes up to speed, the actiVARTM (voltage sensing relay) senses the rise in system voltage, based on anticipated delay of DS1-M in opening, will issue command to open stage 1 DS1-M at or near 0.97 per unit voltage.
- 4. Additional stages (if present) switch off based on time (near 5 to 10 cycle spread between stages to maintain system voltage as motor pulls into synchronism.
- 5. After motor start, the actiVAR[™] capacitors stages are quickly discharged (less than 3 seconds) allowing for another motor start.
- 6. A permissive signal is sent after 10 seconds to allow other plant motors to start.

PUMP STATION – 3-MOTOR VFD START WITH SYNCHRONOUS TRANSFER

Required Equipment For VFD Start – Multiple Motors

- VFD
 - Drive transformer
- VFD starter/breaker
 - Output isolation switch
- Drive output reactor for synchronous transfer
- VFD bus
- VFD output contactors (1 per motor)
- PLC & associated controls
- E-house

VFD START – COST COMPONENTS

Key Cost Factors

- VFD and E-House costs are significant
- Input and output contactors, VFD Bus, PLC contribute additional cost

* Basis of costs available on request

actiVAR[™] START – COST COMPONENTS

alternative

DEEP CUT GAS PLANT APPLICATION - USING RVSS AND VFD'S

Required Equipment For Starting Motors

- 7 RVSS starters Two 9,500 HP VFD starters
 - E-house space
 - Complexity
 - Possible need for cooling equipment
 - Lead-time

DEEP CUT GAS PLANT APPLICATION USING actiVARTM

Required Equipment For Starting Motors with actiVARTM

Qty (2) 42 MVAR actiVARsTM

- No E-house space
- Comes fully assembled
- Can be set up with a tie breaker to allow for redundancy
- Simplicity
- Feeder breaker for each actiVARTM

Savings for total plant implementation: \$1,750,000

The actiVAR[™] Uses ABB DS1-M Technology

Key Ratings

Rated frequency [Hz]	60	50
Rated Voltage [kV]	15.0	17.5
Rated Current [A]	600	630
Mechanical Life [CO]	50.000	
STC [kA – s]	20 - 0.5	
Working Temp [°C] [°F]	-15+55/+5+131	

Benifits of Technology

No Power Quality	\rightarrow Transient Free Switching
Concerns	
No inrush reactors	\rightarrow Lower Cost/Lower Losses
Re-strike-free	→ Diode-technology
Pre-strike-free	→ Diode-technology
Maintenance Free	→ Servomotors
Long Life	→ Rated for 50,000 Close/Open Operations

The DS1-M is able to carry out closing operations on capacitor banks without any transient of current, voltage, frequency or the possibility of prestrike.

Closing Sequence

The DS1-M is able to carry out opening operations on capacitor banks without any overvoltage or the possibility of restrike.

Opening Sequence

Detailed Ratings

Electrical characteristics		DS1 50	DS1 60
Rated frequency	Hz	50	60
Rated voltage	kV	17.5	15
Rated current	A	630	600
Withstand voltage			
 phase to phase and phase to earth 	kV	38 ⁽¹⁾	38 ⁽¹⁾
 across the insulating distance 	kV	45	45
Impulse withstand (BIL)			
- phase to phase and phase to earth	kV	95	95
- across the insulating distance	kV	110	110
Short-time current (time)	kA (s)	20 (0.5)	20 (0.5)
Short-time peak current	kAp	52	52
Other characteristics			·
Mechanical operations	CO	50.000	
Maximum overall dimensions	<mark>բերե</mark> H[mm]	655	
	- 🛱 🛛 W [mm]	618	
	D [mm]	561	
	P [mm]	210	
Weight	kg	130	
Working temperature range	°C	-15 +55	
Maximum installation altitude	mslm	1.000	
Rated dry air absolute pressure	MPa	0.470	

Application Requirements

- **1. Phase rotation** must be A-B-C as labeled on the incoming bus. Improper phase rotation can cause failure to the DS1
- 2. Wye-ungrounded capacitor connection
- **3.** Completion of "homing" procedure
- 4. **Direct connection** of DS1-M Switch and sensor to capacitor bank (no impedance between DS1-M and Capacitor Bank)

Retrofit Application:

Harmonic filter reactors and transient inrush reactors must be removed if located on the load side of the DS1-M. Transient inrush reactors are no longer required. Harmonic filter reactors can be located on the source side of the DS1-M and DS1-M Voltage Sensor.

ABB DS1-M - MOTOR STARTING APPLICATION – TIMING ISSUES

Timing Differences

- DS1 is a 4 to 5 cycle device on opening and closing
- Motor starters are typically 4 to 5 cycle devices

Impact of Timing Differences (using current/voltage sensing technology)

- Voltage sag at start (about 2.5 cycles)
- Voltage swell at synchronization

Mitigation Techniques

- Communication between actiVAR and motor starters
 - Direct wiring
 - Over network 61850 protocol

ABB DS1-M - MOTOR STARTING APPLICATION - TIMING

SEL Relay Operating Times (487V)

Voltage/Current Element: Hide-speed contacts: <50 micro-sec Total Relay Time

DS1 Closing Time:

Binary Input filter: Synchronization: Preparation for closing: Actual mechanical closing: Diode Energizing: **Total DS1 closing time:**

Total Time:

Typical Motor Starting Time:

1.5 cycles (worst case) 0.003 cycles 1.503 cycles

1 cycle 0-1 cycle 0.5 cycle 2.25 cycles 0.25 cycles **4-5 cycles**

5.503-6.503 cycles

4 to 5 cycles

Without taking other measures, a voltage sag for as much as 2.5 cycles may occur between motor start and application of reactive power (vars).

actiVAR[™] - Hybrid Design (PFC Stages and DS1-M Stages)

- Hybrid Designed actiVAR's are equipped with both DS1-M's for motor starting (fast vars) and vacuum switches/contactors for power factor correction (slow vars).
- DS1-M's respond to motor starts and provide reactive power to support motor inrush current.
- Vacuum switches/contactors respond to system power factor and automatically correct system to a preset value (PF = 1.0).
- **DS1-M** Fast VARS
- PFC Slow Vars

actiVAR[™] - HYBRID DESIGN (PFC STAGES AND DS1-M STAGES)

Hybrid Designs Meets All Power Quality Concerns

actiVAR Stages -

- Voltage Sag Limits
- Voltage Flicker Limits
- Inrush Current Limits

PFC Stages -

- Power factor
- IEEE 519 Harmonic Distortion Limits

actiVAR[™] - Typical I/O and System Requirements

Power

- Phase Conductors
 - Cable for Top/Bottom/Side Entry
 - Transient Rated for Application
- Ground Conductors
 - Per National/Local Code

CT/PT Signals

- PT Signals for Over/Under Voltage Protection
- 3-Phased CT Signals for Phase and Ground Fault Protection

Control Power

- Prefer 125 or 48 VDC for control (but not necessary)
- 120 VAC Control Power For Environmental Control (fans, heaters, air conditioners, etc)

Digital I/O

- Communication with motor starters
- Several alarm output for various operating conditions
- Permissive inputs to enable controls (not required, but available)
- Ethernet for remote connection to control to trouble shoot, set, and retrieve data logs

NEPSI RESOURCES TO ASSIST IN APPLICATION OF actiVAR™

- Contact NEPSI about your application
 - NEPSI will provide motor start and actiVAR[™] performance study, quote, and drawings to allow for comparison against alternate technologies
- Web nepsi.com/actiVARTM
 - Product literature
 - Guide form specifications
 - Case studies
 - actiVARTM calculator for motor starting applications
 - actiVAR[™] RFQ form to fill out and submit

actiVAR[™] Gas Plant Project

Compressor Start and PFC Application – 5000 HP Induction Motor 13.8 kV, 24 MVAR 3-Stage actiVAR, 15 MVAR 3-Stage PFC

actiVAR[™] Gas Plant Project - Mentone 5000 HP Motor Start (Uncoupled) WITHOUT Activar Assist

actiVAR™ Gas Plant Project - Mentone 5000 HP Motor Start (Uncoupled) WITH Activar Assist

actiVAR[™] Gas Plant Project - Mentone 5000 HP Motor Start (Uncoupled) WITH Activar Assist Plots of What is Happening at the actiVAR and the Main Transformer

CALCULATION/APPLICATION EXAMPLE – MOTOR START

KEY INFORMATION

- Company XXX has to start a 4000 Volt, 5000 HP Induction Motor with an FLA rating of 626 Amps and a Locked-Rotor Code letter of F
- The serving utility limits voltage sags to 97% (3% voltage drop) at PCC during motor starts
- For power quality reasons, company XXX wants to maintain their line voltage to 96% during motor starting
- What size actiVARTM is required to meet this performance?
 - How many stages/steps?

CALCULATION/APPLICATION EXAMPLE - cont

REQUIRED DATA FOR ANALYSIS

<u>Performance Requirements:</u> Primary voltage sag limit: 97% Secondary voltage sag limits: 96% Maximum inrush current: sometimes specified

Source Data Primary voltage: 34.8kV Source 3-phase short circuit current level: 1.9kA Short circuit X/R ratio: 2.0 <u>Transformer Data</u> MVA rating (OA Rating): 10 Transformer base impedance: 5.55% Transformer X/R ratio: 25

Motor Data Motor voltage: 4000 Volt Motor HP: 5000 HP FLA rating: 626 Amps Locked-rotor code letter: F Locked-rotor power factor: 20%

CALCULATION/APPLICATION EXAMPLE - cont

Gueensbury, NY 12804 5 Fax: (\$18) 792-5767

theast Power Systems, Inc. www.nepsi.com sales@nepsi.com

actiVAR[™] − MOTOR START CALCULATOR

The following calculator computes the expected performance of NEPSI's actiVAR™ in reducing voltage sags associated with large motor starts. Expected voltage sag and voltage drop are calculated for "across-the-line motor starts" based on system impedance data and motor nameplate ratings.

Calculator-

Known variables:

Source Data: Source Voltage, Source Short Circuit Level, and X/R ratio

Supply Side Transformer Data: Transformer Power Rating (MVA), leakage impedance (in % on transformer base), and X/R ratio of leakage impedance

Motor Nameplate Data: Motor Voltage rating, motor full load current (FLA), motor locked rotor current (see code letters following calculator if not known), locked rotor power factor (assume 20% if not known)

Unknown Variables: Voltage drop and voltage sag at motor and supply transformer primary

Calculation Procedure

1. Use actiVARTM calculator at nepsi.com or request spreadsheet analysis tool from NEPSI

<u>http://nepsi.com/resources/calculators/actiVAR</u>TM-motor-startcalculator.htm

- 2. Enter motor, source, and transformer impedance data
- 3. Through trial and error determine MVAR rating of actiVAR[™] to meet performance requirements
- 4. Consider voltage resolution and valve ampere rating in determining number of stages and steps

MOTOR START CALCULATION – Steady State Analysis

STEADY STATE ANALYSIS

- Good for estimating initial voltage drop and torque at motor start
- A relatively easy calculation when done with per unit system
- Does not provide motor acceleration time and whether motor will start.
 - Dynamic simulation techniques required for this analysis.
- Dynamic Analysis Software Programs
 - ETAP
 - ESA- Easypower
 - CYME
 - Many others

MOTOR START CALCULATION – Dynamic Analysis

Typical plot output from dynamic analysis software showing motor terminal voltage, motor current, motor speed, and motor torque versus time

DYNAMIC ANALYSIS

- Performed by NEPSI for all actiVAR[™] orders and RFQ's
- Accurately calculates motor starting time, motor current, voltage, torque, power, and speed for the entire starting period
- Determines whether a motor will start or not start
- Accurately predicts actiVAR[™] performance
- Requires more Data
 - System impedance data
 - Motor impedance data; torque speed curves and inertia data
 - Load torque and inertia data

MOTOR START CALCULATION – Back-of-Envelope

"MVA METHOD"

- Calculate MVAsc of all devices
- Convert single-line diagram to equivalent MVAsc diagram
- Reduce MVAsc diagram to a single MVAsc value at the motor
- Calculate approximate voltage drop without actiVARTM
- To calculate voltage drop with actiVAR[™], subtract actiVAR[™] MVAR rating from Motor MVAsc then calculate voltage drop.

actiVARTM

MVAsc = 24

MVA Rating: 24

Source Data Primary voltage: 34.8kV Source 3-phase short circuit current level: 1.9kA MVAsc= 1.73*1.9kA*34.8kV = 114

Transformer Data MVA Rating (OA Rating): 10 Transformer Base Impedance: 5.55% MVAsc = (10/.0555) = 180 $\label{eq:model} \begin{array}{l} \underline{\text{Motor Data}} \\ \\ \text{Motor HP: 5000 HP} \\ \\ \text{Locked-rotor code letter: G} \\ \\ \text{G} = 5.6 - 6.3 \text{ kVA/HP} \text{ Use } 6 \text{ kVA/HP} \\ \\ \\ \text{MVAsc} = 6 \text{ kVA /HP} * 5000 \text{HP}/1000 = 30 \end{array}$

MOTOR START CALCULATION – Back-of-Envelope cont.

Primary Side Voltage Drop

 $25.7 = \left(\frac{1}{30} + \frac{1}{180}\right)^{-1}$ (without actiVAR)

$$5.8 = \left(\frac{1}{30-24} + \frac{1}{180}\right)^{-1}$$
 (with actiVAR)

$$V_{p \, Drop \, without} = \frac{25.7}{25.7 + 114} = 0.183 \, PU$$

MVAsc Diagram Reduced

$$V_{P \, Drop \, with \, actiVAR} = \frac{5.8}{5.8 + 180} = 0.031 \, PU$$

$$69.7 = \left(\frac{1}{114} + \frac{1}{180}\right)^{-1}$$

$$V_{s \, Drop \, without} = \frac{30}{30 + 69.7} = 0.30 \, PU$$

$$V_{s \, Drop \, with \, actiVAR} = \frac{30 - 24}{30 - 24 + 69.7} = 0.079 \, PU$$

For more information on MVA Short Circuit Method

http://www.jmpangseah.com/wp-content/uploads/2003/01/chapter-5.pdf